З м і с т

Розділ 5. Матеріалознавство (0)

Подкатегории

Вступ (0)

Матеріалозна́вство — міждисциплінарна галузь науки, яка вивчає залежність між хімічним складом, будовою і властивостями матеріалів, а також впливом на їх будову і властивості теплових, хімічних, електромагнітних та інших факторів. Матеріалознавство об'єднує методи фізики й хімії для розробки й впровадження новітніх матеріалів у промислове виробництво. Сучасна техніка, зокрема машини, характеризується складними умовами роботи (високі питомі навантаження, високі швидкості відносного переміщення, високі та низькі температури, агресивні середовища, вакуум та ін.). Ці умови вимагають застосування таких матеріалів, які в даних умовах забезпечили б довговічність, надійність деталей машин, механізмів в цілому а також різного інструменту у поєднанні з невисокою вартістю. Матеріалознавство зародилося з металургії, але в сучасну еру область дослідження розширилася, включаючи сплави й композитні матеріали, кераміку, полімери, біоматеріали тощо. Мета дисципліни — пізнання властивостей матеріалів в залежності від складу і виду обробки, методів їх зміцнення для найефективнішого використання в техніці, а також створення матеріалів з наперед заданими властивостями: з високою міцністю чи пластичністю, з доброю електропровідністю, великим електричним опором або спеціальними магнітними властивостями, а також, поєднання різних властивостей в одному матеріалі (композиційні матеріали). Головним завданням цієї дисципліни є набуття знань та навичок по оцінці властивостей матеріалів, раціональному і доцільному вибору їх для конкретних умов роботи, вміння застосовувати ефективні технологічні методи обробки та зміцнення, які б привели в результаті до здешевлення виробів, зменшення витрат матеріалів з одночасним збільшенням терміну експлуатації.

Просмотр материалов ...
1.Метали їх властивості та методи визначення

1.Метали їх властивості та методи визначення (0)

Прикладна наука, що вивчає у взаємозв’язку склад, будову та властивості металів і сплавів, встановлює залежність будови і властивостей від методів виробництва та обробки металів і сплавів, а також зміну їх під впливом механічних, термічних та інших зовнішніх дій на метали називається металознавство. Властивість (property, quality) – це сукупність характеристик металів і сплавів від яких залежить придатність виготовлення деталей та конструкцій. Одні з них легкі (магній, алюміній, титан), інші важкі (свинець). Олово, свинець - метали, які легко плавляться, а для розплаву заліза або платини необхідно витратити багато енергії. Міцність є одним з головних факторів при вироблені металу для виготовлення деталей, але не всі однаково міцні. Розрізняють фізичні, хімічні, механічні та технологічні властивості металів: Фізичні властивості металів проявляються при дії фізичних явищ, які діючи на метал, не змінюють його складу. Наприклад, при нагріванні метал розплавляється, але його склад залишається попереднім. Густина (solidity, strength) – величина, яка дорівнює відношенню маси металу до займаного ним об’єму. Наприклад, густина заліза дорівнює 7800 кг/м3, алюмінію 2700 кг/м3, свинцю 11300 кг/м3. Кольором називається здатність металів відбивати світлові промені, що на них попадають. Промені світла, відбиті від різних металів, діють на органи зору по-різному, що створює відчуття того чи іншого кольору. Наприклад, мідь має рожево-червоний колір, алюміній – білий. Теплопровідністю (heat/thermalconductivity) називають здатність металів проводити тепло. Чим більша теплопровідність, тим швидше тепло поширюється по металу при його нагріванні і віддається ним при охолодженні. Високу теплопровідність мають мідь та алюміній. Залізо, сталь, чавун проводять тепло в 4-6 разів гірше, ніж мідь. Теплоємність (thermal/heatcapacity) визначає кількість тепла, необхідного для нагрівання металу на 10. Низьку теплоємність мають платина і свинець. Теплоємність сталі і чавуну майже в 4 рази вище теплоємності свинцю. Плавлення (melting) – це процес переходу металу з твердого стану в рідкий. Метали із високою температурою плавлення вважають тугоплавкими (вольфрам, хром, платина), а метали з низькою температурою плавлення належать до легкоплавких (олово, свинець). Наприклад, температура плавлення заліза-15390, міді-1083, олова-2319, вуглецевої сталі - 1420-1520 0С. Теплове (термічне) розширення означає здатність металу, що нагрівається, збільшувати свої розміри. Електропровідністю називають здатність металу проводити електричний струм. Хорошими провідниками струму є срібло, мідь, алюміній. Деякі метали і сплави (ніхром) чинять електричному струму великий опір. Хімічні властивості. Це – здатність металів і сплавів взаємодіяти з навколишнім середовищем, вступати в хімічні сполучення, розчинятися, кородувати, чинити опір дії агресивних середовищ. Найбільш важливі з них – це окислення на повітрі, кислотостійкість, лугостійкість, жароміцність. Механічні властивості пов’язані з поняттям про навантаження, деформацію та напруження. Від механічних властивостей металу залежить його поведінка при деформації і руйнуванні під дією зовнішніх сил конструкцій чи деталей. Цим властивостям буде детально розглянуто далі, бо саме їм приділена основна увага в цьому розділі. Міцність (durability) – це властивість металів, не руйнуючись, чинити опір дії прикладених зовнішніх сил. Міцність металів характеризується умовною величиною – межею міцності. Пружність (resilience) - здатність металів змінювати свою форму під дією зовнішніх сил і відновлювати її після припинення дії цих сил; Відношення навантаження, при якому зразок починає мати залишкові подовження, до площини його поперечного перерізу називається межею пружності. Наприклад, межа пружності сталі до 300; міді 25;свинцю 2,5МПа. Пластичність (plasticity) - здатність металів, не руйнуючись, змінювати під дією зовнішніх сил свою форму, після припинення дії сил. Сталь у значній мірі пластична, а при нагріванні її пластичність зростає. Цю властивість використовують при одержанні виробів шляхом прокату та кування. Втомлюваність (tiredness) – зміна механічних і фізичних властивостей матеріалів під дією сил, циклічно змінюються під час напружень та деформацій. В умовах дії таких навантажень в працюючих деталях утворюються і розвиваються тріщини, які приводять до повного руйнування деталей. Подібні руйнування небезпечні тим, що можуть проходити під дією напруг значно менших границь міцності і текучості. Крихкість (fragile) – властивість металу руйнуватись відразу після дії прикладених до нього сил, не показуючи жодних ознак деформації (чавун). Твердість (hardness) – здатність металу чинити опір вдавленню в нього іншого, більш твердого матеріалу. Чавун і сталь мають високу твердість, свинець – низьку. Для перевірки твердості металів існує три методи випробування, названих за іменами їх винахідників - Бринеля, Роквелла, Віккерса: - випробування за способом Бринеля полягає в тому, що в поверхню зразка металу, під певним навантаженням, вдавлюють сталеву загартовану кульку діаметром 2,5; 5,0; 10 мм. Після вдавлювання зразка на поверхні лишається відбиток кульки. За допомогою спеціального мікроскопа вимірюється діаметр відбитка, а відтак визначається число твердості НВ: відношення прикладеного до кульки навантаження до площини поверхні відбитка називається числом твердості за Бринелем НВ. Числа твердості за Бринелем НВ для вуглецевої сталі – 1300-2800, міді – 300. свинець – 30-80 МПа, - випробування зразка за способом Роквела (HR) полягає у тому, що за допомогою преса в поверхню зразка вдавлюють алмазний конус з кутом при вершині 1200. Твердість визначається глибиною вдавлення конуса, - випробування за способом Віккерса (HV) застосовують для вимірювання твердості на невеликих ділянках термічно оброблених металів. В зразок металу за допомогою пресса вдавлюють правильну чотиригранну алмазну піраміду з кутом при вершині 1360. Ударна в’язкість – здатність металів не руйнуватись при дії на них ударних навантажень. Ударна в’язкість визначається за допомогою маятникового копра. Зразок стандартної форми встановлюють в опорах і руйнують падаючим з висоти вантажем Технологічні властивості визначають здатність металів отримувати ту чи іншу обробку. До технологічних властивостей металів належать: обробка різанням, ковкість, рідкотекучість, усадка, зварюваність. Ковкістю (malleable) називається здатність металів, не руйнуючись, приймати потрібну форму під дією зовнішніх сил. Сталь у нагрітому стані має хорошу ковкість. Рідко текучістю (seldom-fluidity) називається здатність розплавлених металів заповнювати ливарні форми. Високу рідкотекучість має сірий чавун, низьку – мідь. Усадкою (shrinkage) називається здатність розплавлених металів зменшувати свій об’єм при охолодженні. Ця властивість має значення в ливарній справі. Моделі виливків виготовляють з урахуванням усадки, тобто більших розмірів ніж розміри виливка. Крім того, усадка призводить до утворення тріщин у виливках. Найменшу усадку мають сірий чавун, цинкові і алюмінієві сплави. Обробка різанням – це здатність металів піддаватися дії різальних інструментів. Зважаючи на меншу твердість, деякі кольорові метали легше обробляти різанням, ніж чорні Зварюваністю називається здатність металів міцно з’єднуватися шляхом розплавлення місця з’єднання. Добре зварюються сталі з низьким вмістом вуглецю. Чавун і сплави кольорових металів зварюються значно складніше. Питання для самоконтролю 1. Як називають властивість матеріалів чинити опір зовнішнім силам? 2.Що таке твердість? Густина? 3. В чому полягає суть способу визначення твердості металу за Бринелем? 4. Як перевіряють твердість металів способом Роквелла? 5. Що характеризують технологічні властивості матеріалів? 6. Назвіть відомі вам види навантажень, які діють на деталі. 7. Назвіть основні технологічні властивості металів? 8. Які властивості відносять до фізичних?

Просмотр материалов ...

2.Основні відомості з теорії сплавів (0)

Сплав — це речовина, яку одержують поєднанням (сплавленням, спіканням, електролізом) двох або більше елементів. Однак, зазви­чай, сплави одержують шляхом розплавлення двох або більше елементів (металів або неметалів) з наступною їхньою кристалізацією (твердненням).

Структура і властивості сплавів значною мірою відрізняються від структури і властивостей елементів, що їх утворюють. Сплав, виго­товлений переважно з металів, який має металеві властивості, на­зивають металевим сплавом. Порівняно з чистими металами сплави мають більш цінний комплекс механічних, фізичних і технологічних властивостей. Залежно від кількості елементів (компонентів), що входять до складу розплаву, розрізняють двокомпонентні, трикомпо­нентні або багатокомпонентні сплави (системи). У розплаві всі ком­поненти сплава знаходяться в атомарному стані, утворюючи рідкий однорідний розчин із статистично однаковим хімічним складом. Під час тверднення (кристалізації) атоми компонентів розташовуються у певному порядку, утворюючи кристалічну речовину — сплав. При цьому існує три типи взаємодії компонентів сплаву:
  • утворення механічної суміші компонентів;
  • утворення хімічних сполук;
  • утворення твердих розчинів.

    У разі формування механічної суміші компонентів сплаву атоми кожного з компонентів утворюють власні кристалічні ґратки, тобто кожний елемент кристалізується самостійно. Механічну суміш, яку утворюють два компоненти, що нездатні взаємно розчинюватись або утворювати хімічну сполуку при кристалізації з рідкого стану, називають евтектикою. Структура сплавів такого типу (Sn — Zn, Sb — Pb) неоднорідна (гетерогенна). Слід очікувати, що властивості цих сплавів будуть усередненими, виходячи з рівня властивостей компонентів та їхнього кількісного вмісту у сплаві.
    Утворення хімічної сполуки при кристалізації зумовлено здатністю різнорідних атомів (які значною мірою відрізняються за будовою і властивостями) об'єднуватись у певній пропорції, утворюючи новий тип кристалічної ґратки, що відрізняється від ґраток компонентів сплаву. При цьому утворюється речовина з новими властивостями, для якої характерно: чітке співвідношення кількості атомів елементів, що її утворюють АпВт (наприклад, Fe3C, Fe203); наявність власного типу кристалічної ґратки; певна (постійна) температура плавлення; суттєва відмінність у властивостях порівняно з вихідними елемен­тами; стрибкоподібна зміна властивостей при зміні хімічного складу (сингулярність).
    Якщо ж при переході сплаву з рідкого стану в твердий зберігається однорідність і розчинність елементів, що його утворюють, такий сплав називають твердим розчином. При утворенні твердого розчину один з елементів зберігає власну кристалічну ґратку (роз­чинник), а інші у вигляді окремих атомів розподіляються у його кристалічній ґратці. Залежно від характеру їх розміщення в ґратці розчинника розрізняють тверді розчини заміщення й тверді розчини втілення. Утворення відповідного виду твердого розчину пов'язане з типом кристалічної ґратки та співвідношенням атомних радіусів компонентів.
    При утворенні твердих розчинів заміщення атоми компонента, що розчиняється, заміщують частину атомів роз­чинника у вузлах його кристалічної ґратки. Коли компоненти замі­щують один одного у кристалічних ґратках у будь-яких кількісних співвідношеннях, то утворюється безперервна низка твердих роз­чинів. Таку необмежену розчинність (здатність утворювати тверді розчини при будь-яких пропорціях компонентів) мають лише метали з кристалічною ґраткою одного типу за умови, що параметри їхніх ґраток відрізняються не більше ніж на 8... 15 %. Проте допустимі відміни в параметрах для різних пар металів різні. Так, необмежені тверді розчини у сплавах на основі заліза можуть утворюватись за умови, що атомні діаметри елементів, які розчинюються, відріз­няються від заліза не більше ніж на 8 %. Якщо різниця атомних діаметрів більше 8 %, на основі заліза утворюються лише обмежені тверді розчини.
    Взаємодію елементів у сплавах і характер структури зумовлює фізична природа елементів, тобто тип кристалічної ґратки, розташу­вання елементів у періодичній системі Д.І. Менделєєва тощо.
Дійсно, метали, розташовані поблизу один від одного у таблиці Д.І. Менделєєва, мають необмежену розчинність: Сu(29) і Ni(28); Fe(26) і Ni(28); Fe(26) і Cr(24); Fe(26) і Со(27); Со(27) і Ni(28), або розташовані в одній групі: As(33) і Sb(51); Au(79) і Ag(47); Au(79) і Cu(29); Bi(83) і Sb(51) (цифри у дужках означають номер елемента). Елементи з кристалічними ґратками різного типу, якщо їхні атоми близькі за розмірами, можуть розчинюватись один в одному обмежено. Чим більша різниця в розмірах атомів компонентів, тим менше вони розчинюються у твердому стані.
    Обмежена розчинність компонентів характерна також при утво­ренні ними твердих розчинів втілення, тобто таких, коли атоми розчинених компонентів розташовуються (втілюються) у міжвузольних об'ємах метала-розчинника. При цьому атоми роз­міщуються не в будь-якому міжвузлі, а лише в тих, де для них достатньо вільного об'єму. Ці пустоти малі за розміром, у них можуть розміститись елементи, атоми яких мають відповідні невеликі розміри (водень, азот, вуглець, бор).       Вміст їх у твердому розчині втілення не перевищує 1...2 %. Тобто такі сплави є твердими розчинами з обмеженою розчинністю компонентів.
    Утворення твердих розчинів (заміщення, втілення) супроводжу­ється зміною параметрів кристалічної ґратки метала-розчинника за­лежно від співвідношення розмірів атомів компонентів і відповідним зміцненням сплаву. Зміцнення пропорційне відносній зміні парамет­ра ґратки, причому зменшення параметра призводить до більш суттєвого зміцнення, ніж його збільшення.
    Властивості сплавів, що утворюють тверді розчини, відрізняються від властивостей елементів-компонентів. Проте сплави зберігають основні властивості металів, а саме: здатність до пластичної дефор­мації, електропровідність тощо.
Відзначимо також, що на відміну від механічної суміші твердий розчин є однорідним.

 У металознавстві чисті компоненти позначають латинськими літерами А, В, С, а тверді розчини — грецькими літерами α, β, γ тощо.

диаграмма железо- углерод

Діаграма стану системи залізо- вуглець

   

 

Просмотр материалов ...

3. Чавуни (0)

Чавун — це сплав заліза з вуглецем (з вмістом від 2,14 до 6,67 % С).

    У машинобудуванні застосовують чавуни, які містять від 2,14 до 4,5 % вуглецю.

    Чавун порівняно з вуглецевою сталлю характеризується кращими ливарними і гіршими пластичними властивостями.

    Механічні властивості чавуну залежать від двох чинників: кількості, розміру, форми і розподілу графітових вкраплень; структури металевої основи.

    Перший чинник має вирішальне значення, оскільки графітові вкраплення, розміщуючись у чавуні і утворюючи ніби надрізи в металевій основі, ослаблюють Його міцність (особливо при великих вкрапленнях). При дрібних графітових вкрапленнях чавун має високі механічні властивості.

    Характер і ступінь графітизації зумовлюється швидкістю тверднення і охолодження чавуну. Чим повільніше відбувається процес тверднення й охолодження, тим краще розкладається карбід заліза, тим більше виділяється графіту.

    Другим чинником впливу на міцність чавуну є структура його металевої основи.

    Нормальна структура сірого чавуну (без добавляння легувальних елементів і без термообробки) є феритною чи перлітною, а проміжна між ними — феритно-перлітною металевою основою.

     Найбільш бажана металева основа чавуну — перліт із вмістом 0,8 % зв'язуючого вуглецю Fe3C. Чавуни з феритною і феритно-перлітною основою мають знижену міцність, порівнюючи з перлітним чавуном, але вони характеризуються підвищеною в'язкістю, оскільки в них менше або зовсім немає зв'язуючого вуглецю.

Щоб підвищити механічні властивості чавуну, перед розливанням у форми в рідкий чавун додають модифікатор у вигляді розмеленого силікокальцію чи феросиліцію в кількості 0,1...0,4 % від маси чавуну. Модифікатори розкиснюють чавун, утворюють силікатні вкраплення, які є центрами графітизації і гальмують ріст зерен графіту. Це дає змогу одержувати високоміцний чавун з кулястим графітом.

 Вплив домішок на структуру і властивості чавуну

    Вуглець визначає структуру і властивості чавуну. В чавуні він може бути в структурі цементиту або графіту. Графіт у чавуні має пластинчасту, кулясту і пластівцеву форму.

    Виділення вуглецю у вигляді графіту надає чавуну кращих ливарних властивостей.

    Манган збільшує крихкість чавуну, поліпшує рідкотекучість. Він сприяє відбілюванню чавуну, тобто утворенню хімічної сполуки Fe3C (цементиту). У чавунах міститься 0,5... 1,0 % мангану.

    Силіцій сприяє графітизації чавуну, тобто утворенню сірого чавуну. Він утворює із залізом хімічні сполуки (FeSi, Fe3Si2, які називають силіцидами. Силіциди переходять у твердий розчин із залізом, знижують розчинність вуглецю в залізі, сприяють розпаду цементиту з виділенням графіту.

    Графітизувальні дії силіцію практично обмежуються 3,5 % його вмісту в чавуні. Змінюючи вміст силіцію в чавуні, можна регулювати в ньому співвідношення між зв'язуючим вуглецем і графітом. Чим більше силіцію, тим більше виділення графіту, а отже, тим менша міцність такого чавуну, нижча твердість — краще обробляється.

    Силіцій сприяє деякому зниженню температури плавлення, покращує рідкотекучість.

    Сірка є шкідливою домішкою. Вона сприяє відбілюванню чавуну; значно знижує його рідкотекучість та зумовлює крихкість і схильність до утворювання тріщин. Тому вміст сірки обмежується 0,08...0,12 %. Наявність сірки в чавуні затримує розпад цементиту, збільшує усадку, зумовлюючи таким чином утворення структури білого чавуну. При цьому в чавуні з'являються тверді плями, що погіршує його обробку різанням і механічні властивості.

    Фосфор у невеликій кількості є корисною домішкою. Він майже не впливає на структуру чавуну, оскільки не прискорює і не сповільнює графітоутворення. Від наявності фосфору в твердому розчині твердість чавуну підвищується, а в'язкість значно знижується, що спричинює погіршення механічних властивостей чавуну. Фосфор поліпшує ливарні властивості: знижує температуру плавлення, збільшує рідкотекучість і сприяє якісному заповненню форми. Тому для лиття тонкостінних виробів беруть чавун із підвищеним вмістом фосфору (1,0... 1,25 %), а для звичайного лиття — 0,1...0,9 % Р.

Види чавунів, їх маркування і застосування

    Залежно від хімічного складу і структури чавуни бувають: білі, сірі, ковкі, високоміцні і спеціальні.

    Білий чавун має обмежене застосування через високу твердість і крихкість. У білому чавуні майже весь вуглець перебуває у хімічно зв'язаному стані — у вигляді цементиту Fe3C. Білий чавун дуже твердий, він майже не піддається обробці різанням і в машинобудуванні сільськогосподарської техніки не застосовується, його використовують для виробництва сталі, ковкого чавуну, тому називають Переробним.

    Сірий чавун широко застосовують у машинобудуванні завдяки його високим ливарним, антифрикційним властивостям, задовільній обробці різанням, зносостійкості. Проте для нього характерні невисоке значення границі міцності при розтягуванні, дуже низька пластичність.

    Границя його міцності при розтягуванні σΒ= 120...380 МПа, твердість 145...270 НВ, відносне видовження δ = 0,2...0,8 %.

    Механічні властивості чавунів характеризуються їх структурою й умовами (у визначенні не тільки хімічного складу). Стандарти регламентують не хімічний склад чавунів, а їхні властивості, які й позначають у марках чавунів. Наприклад, марка СЧ 20 позначає сірий чавун з границею міцності при розтягуванні σв = 200 МПа. В машинобудуванні застосовують марки сірих чавунів СЧ 10...СЧ 45 (остання цифри «0» або «5»).    

    Сірі чавуни містять постійні домішки в такій кількості: 3,0...3,5 % вуглецю, 1,5...3,0 % силіцію, майже 0,8 % мангану, до 0,12 % сірки і 0,3...0,9% фосфору.

    У сірих чавунах вуглець частково або повністю перебуває у вільному стані у формі пластинчастого графіту. За цього в зломі має сірий колір. Інколи в структурі чавуну крім графіту утримується ледебурит. Такий сіро-білий чавун називають Половинчастим. Основні його властивості: висока твердість, крихкість і низька міцність.

    Отже, змінюючи вміст і співвідношення постійних домішок, можна в певних межах змінювати структуру чавуну і його властивості.

    Залежно від розпаду цементиту одержують основи сірих чавунів, які складаються: з фериту, їх називають Феритними Чавунами; з фериту і перліту — Феритно-перлітними; З перліту — Перлітними. Найміцнішими вважають перлітні чавуни.

    Сірий чавун широко застосовують в автотракторному і сільськогосподарському машинобудуванні для виробництва деталей методом лиття. З нього виготовляють станини металорізальних верстатів, блоки і гільзи автомобільних і тракторних двигунів.

    Щоб вибрати марку чавуну для конкретної деталі, потрібно обумовити, в яких умовах працює ця деталь і порівняти технологічні та механічні властивості вибраної марки для забезпечення технічних умов роботи деталі в механізмі.

    У довідниках, каталогах та іншій літературі наводять перелік чавунів (інших марок сплавів) для конкретних деталей. Наприклад, феритний сірий чавун марки СЧ 10 призначений для виготовлення слабко - і середньонавантажених деталей: кришок, фланців, маховиків, дисків зчеплення та ін. Феритно-перлітний чавун марки СЧ 20 застосовують для деталей, які працюють при підвищених статичних, динамічних навантаженнях: блоки, поршні та головки циліндрів. Перлітні сірі (модифіковані) чавуни СЧ ЗО, СЧ 40 мають високі механічні властивості. їх використовують для виготовлення гільз циліндрів, розподільних валів та ін.

    Ковкий чавун має графітні вкраплення пластівчастої форми (рис.). Він міцніший і пластичніший від звичайного сірого чавуну, має вищу в'язкість.

    Ковкий чавун — умовна назва, оскільки його не кують. Цей чавун одержують з білого чавуну термічною обробкою (спеціальним відпалюванням — томлінням).

    Щоб отримати ковкий чавун використовують білі чавуни (приблизно) такого складу: 2,5...3,2% вуглецю, 0,6...0,9 силіцію, 0,3...0,4 мангану, 0,1...0,2 фосфору і не більш як 0,06...ОДО Сірки.

    До структури білого чавуну входять перліт, ледебурит і цементит. Під час томління цементит, що є в чавуні, розпадається на ферит і графіт або на перліт і графіт: у першому випадку чавун буде феритним, а в другому — перлітним. Залежно від ступеня графітизації ковкий чавун може бути і феритно-перлітним. Різного ступеня графітизації досягають зміною умов відпалювання. Відмінність структур чавунів зумовлює і відмінність їхніх властивостей. Наприклад, феритний ковкий чавун порівняно з перлітним має меншу твердість і більшу пластичність.

    Для одержання ковкого чавуну білий чавун нагрівають до 950... 1000 °С і після тривалого витримування охолоджують з малою швидкістю до кімнатної температури.

    Щоб отримати ковкий феритний чавун, застосовують двостадійне відпалювання: першу стадію графітизації проводять за температури близько 1000 °С, тривалістю 30...40 год, другу стадію — при 740 °С, тривалістю 20...ЗО год.

    Ковкий чавун має такий склад: 2,2...3,0% вуглецю; 0,7...L5 % силіцію; 0,2...0,6 % мангану; до 0,2 % фосфору і до 0,1 % сірки. Його виплавляють в електропечах. Злом чавуну, структурою якого є ферит і графіт, буде темним.

    

    Ковкий чавун маркують літерами КЧ і цифрами, дві перші з яких позначають границю міцності при розтягуванні, а останні — відносне видовження. Наприклад, марка КЧ 30-6 означає: КЧ — ковкий чавун; 30 — границя міцності при розтягуванні (σв = 300 МП а) і 6 — відносне видовження (δ = 6 %).

    Ковкий чавун широко використовують в сільськогосподарському машинобудуванні для виготовлення деталей, які в процесі роботи витримують ударні навантаження (зубчасті колеса, шестерні, ланки ланцюгів, зірочки, пальці різального апарата зернозбирального комбайна та ін.), деталей сівалок, зерноочисних машин, механізації тваринництва (корпуси водопровідних вентилів, кранів та ін.)

    Високоміцний чавун. Міцність чавуну залежить від кількості і форми вкраплення графіту. Додавання в рідкий сірий чавун 0,5 %

    Магнію від маси чавуну сприяє утворенню дрібнозернистої структури. При цьому утворюються часточки графіту кулястої форми (рис. ), яка унеможливлює наявність гострих надрізів усередині металевої основи. Тому міцність, пластичність і в'язкість чавуну значно підвищуються.

    Високоміцний чавун (як і сірий) поділяють на марки залежно від механічних властивостей, причому основним показником є границя міцності при розтягуванні. Механічні властивості залежать від структури металевої основи, яка може бути перлітною, феритно-перлітною і феритноюЛіпшою є структура, яка складається з перліту і графіту кулястої форми, обмежених невеликими (білими) кільцями фериту.

    Маркується високоміцний чавун  літерами ВЧ (високоміцний чавун) і цифрами, дві перші з яких показують границю міцності при розтягуванні, а останні — відносне видовження. Наприклад, марка ВЧ 800-2 означає, що чавун цієї марки має σ„ = 800 МПа, δ«2%.

    Високоміцні чавуни є замінником литої і штампованої сталі. Тому з такого чавуну виготовляють відповідальні ші деталі машин і двигунів — гільзи циліндрів, колінчасті вали, деталі супортів металорізальних верстатів, лапки бурякозбирального комбайна та ін.

    Чавун з вермикулярним графітом призначений для одержання виливків. Він має структуру графіту вермикулярної (червоподібної) форми з вкрапленням до 40 Кулястого та 10 % пластинчастого графіту.

    Для виготовлення виливків призначені такі марки чавуну: ЧВГ 300-4, ЧВГ 300-5, ЧВГ 400-4, ЧВГ 500-1.

    Умовне позначення марки чавуну з вермикулярним графітом, наприклад ЧВГ 300-4, означає: Ч — чавун; ВГ — вермикулярний

Графіт; 300 — границя міцності при розтягуванні, виражена в мегапаскалях (300 МПа); 4 — відносне видовження, виражене у відсотках (4 %).

    Леговані чавуни зі спеціальними властивостями. До цих чавунів належать: антифрикційні, які забезпечують низький коефіцієнт тертя; жаростійкі, що мають підвищену стійкість до окиснення і корозії.

    Щоб одержати чавуни зі спеціальними властивостями, їх легують нікелем, хромом, молібденом, титаном, алюмінієм і міддю. Відповідно змінюються структура і властивості чавунів.

    Антифрикційні чавуни характеризуються пер літною структурою металевої основи, наявністю великої кількості вкраплень графіту. При цьому перлітна основа утворює достатню міцність деталі, фосфідна евтектика забезпечує підвищення зносостійкості, а вбирання і утримування мастила відбувається у місцях розміщення графіту.

    Більшість антифрикційних чавунів містять у невеликій кількості хром, титан, мідь та інші елементи.

    Антифрикційні чавуни маркують так: АЧС-1, АЧС-2, АЧС-4, АЧС-5, АЧС-6, АЧК-1, АЧК-2, АЧВ-1, АЧВ-2, що означає: АЧС — антифрикційний чавун сірий; АЧК — антифрикційний чавун ковкий; АЧВ — антифрикційний чавун високоміцний; число в кінці марки означає порядковий номер. Порядковий номер вказує на хімічний склад антифрикційного чавуну: АЧС-1 (3,2...3,6 % С; 1,3...2 % Si; 0,6...1,2% Μn; 0,2...0,5% Cr; 0,8... 1,6 % Си; 0,15...0,4 % Ρ; 0,12% S); АЧС-2 (3,0..3,8% С; 1,4..2,2 Si; 0,3... 1,0 Μn; 0,2...0,5% Cr; 0,2...0,5% Νί; 0,03...0,1% Ті; 0,2.0,5% Си; 0,151...0,40% Ρ; 0 12 % S); АЧК-2 (2 6 30% С; 08 13% Si; 0 2 06% Μn; до 0,25 % Ρ; 0,12% S); АЧВ-1 (2,8...3,5% С; 1,8...2,7% Si; 0,6...1,2% Μn; 0,7 % Си; 0,03...0,08 % Mg; 0,20 % Ρ; 0,03 % S).

Із антифрикційних чавунів виготовляють деталі тертя (втулки, вкладиші, підшипники ковзання, ролики, ущільнення та ін.).

Жаростійкі чавуни.

    Леговані чавуни з відповідним вмістом алюмінію, силіцію, хрому, нікелю мають підвищену жаростійкість. Крім того, вони забезпечують стабільність структури при нагріванні.

    Жаростійкі чавуни маркують так: ЖЧХ-2,5 — жаростійкий хромовий чавун з вмістом 2,5 % Сг; ЖЧЮХ — жаростійкий алюмінієво-хромовий чавун з вмістом 1 % А1 і 1 % Сг; ЖЧЮ6С5 — жаростійкий алюмінієво-силіцієвий чавун з вмістом 6 % А1 і 5 % С.

    Такі чавуни застосовують для виготовлення деталей прес-форм, елементів плунжерних пар машин для лиття під тиском, штампів гарячого деформування та ін.

Просмотр материалов ...

4. Сталі (0)

    Сталлю називається сплав заліза деякої кількості вуглецю (не більше 2,14 %), а також незначної кількості інших елементів. Саме цей матеріал широко застосовується для виготовлення найрізноманітніших приладів, інструментів і будівельних конструкцій.     Класифікація і застосування сталей залежать від багатьох факторів, які необхідно розібрати детальніше.       Змінюючи хімічний склад цього матеріалу за рахунок концентрації вуглецю і привнесення легуючих елементів, можна отримувати широкий діапазон сталей з абсолютно різними властивостями, що дозволяє використовувати цей матеріал у всіх галузях господарювання.

Класифікація сталей за призначенням. Класифікація і маркування сталі

 

         Сталь: класифікація, застосування, маркування

    Насамперед варто сказати, що сталь буває вуглецева та легована. Це залежить від того, чи були додані в сплав спеціальні легуючі елементи - алюміній, нікель, хром, молібден, титан, бор, ванадій, марганець та інші. Всі ці добавки застосовуються для підвищення специфічних властивостей сталі, а найкращий результат досягається комплексним легуванням. У загальному випадку сталі класифікують:

  • за призначенням;
  • за якістю;
  • за способом виробництва;
  • за мікроструктурою;
  • за хімічним складом.

Хімічний склад

Як вже було сказано, класифікація сталей в залежності від хімскладу поділяє цей матеріал на дві великі групи:

  • леговані;
  • вуглецеві.

У свою чергу, кожну з цих груп можна додатково розділити на декілька частин. Класифікація легованих сталей передбачає наявність таких видів:

  • низьколеговані містять незначну кількість (до 25 %) легуючих добавок;
  • середньолеговані - кількість додаткових елементів не перевищує 10 %;
  • високолеговані характеризуються наявністю легуючих елементів у кількості більше 10 %.

Можна також розділити і другу групу. Класифікація вуглецевих сталей виглядає так: 

  • високовуглецеві характеризуються вмістом вуглецю більше 06 %;
  • середньовуглецеві містять від 025 до 06 % вуглецю;
  • маловуглецеві — до 025 %.
Класифікація сталей за призначенням. Класифікація і маркування сталі

Мікроструктура

В нормалізованому стані стали бувають:

  • перлітні - характеризуються низьким вмістом елементів легування і мають після нормалізації структуру: перліт, перліт + ферит, перліт + заевтектоідний карбід;
  • мартенситні - мають знижену критичну швидкість загартування і досить високий вміст легуючих елементів;
  • аустенітні — підвищений вміст легуючих елементів, під впливом яких досягається структура: аустеніт, аустеніт + карбід.

Класифікація вуглецевих сталей у відпаленому стані:

  • доэвтектоидная застосовується, наприклад, для штампів гарячого деформування;
  • заэвтектоидная має структуру, що складається з перліту і цементиту, зазвичай використовується для виготовлення інструменту;
  • карбідна (ледебуритная) — наприклад, швидкорізальна сталь;
  • феритної — нержавіюча, жароупорная, жаростійка, високохромистая сталі.

Якість і спосіб виробництва

Безумовно, якість сталі залежить від присутності в ній шкідливих домішок у вигляді сірки і фосфору. В залежності від цього показника класифікація сталей виглядає так: 

  • звичайні — сірки (S) до 006 %, фосфору (P) до 007 %;
  • якісні — сірки до 004 %, а фосфору до 0035 %;
  • високоякісні — ті ж показники зменшені до 0025 %;
  • особовисококачественние — менш 0015 % сірки і до 0025 % фосфору.
Класифікація сталей за призначенням. Класифікація і маркування сталі

Спосіб виготовлення сталі зумовлює її будова, склад і властивості. Так, звичайна сталь (звичайна) найчастіше виплавляється в мартені або томасовских і бессемеровских конвертерах, після чого формується досить великі злитки. Така сталь має підвищену кількість неметалевих домішок. Високоякісні сталі виготовляють більш досконалими методами, наприклад в електропечі, а особовисококачественние додатково очищуються від оксидів і сульфідів за допомогою ЕШП — електрошлакового переплаву. Такі сталі виготовляються виключно легованими.

Розкислення

Також існує класифікація сталей в залежності від ступеня розкислення, тобто від того, яка кількість кисню було видалено в процесі виготовлення. Виходячи з цього параметра, стали бувають:

  • киплячі — мало розкислені, насичені киснем;
  • спокійні — абсолютно розкислені;
  • напівспокійну — стали, в яких кисень вилучено частково.

Для розкислення маловуглецевих сталей застосовують алюміній, марганець і кремній. Киплячу сталь зазвичай розкислюють за допомогою феромарганцю в полуспокойную, крім цього, додають невелику кількість феросиліцію, а спокійну, крім попередніх компонентів, обробляють алюмінієм і силикомарганцем.

Що означає маркування стали?

Класифікація сталей за призначенням. Класифікація і маркування сталі

Як не дивно, але класифікація марок стали досить різноманітна, і єдиної світової системи не існує. У ряді країн, у тому числі і в Україні, прийнята буквено-чисельна маркування. Якісні вуглецеві сталі позначаються двозначним числом, яке вказує на кількісний вміст вуглецю (в сотих %). Вуглецеві сталі маркуються літерою "У" і числом, що виражає кількість вуглецю (до десятих %) — В9 В12 і т. д. Літери використовуються також і для позначення основного елемента легування, наприклад: "П" - фосфор, "А" — азот, "T" — титан, Б — ніобій, "Г" — марганець, "Ю" — алюміній, Д — мідь, "M" — молібден, "P" — бор, "До" — кобальт, "В" — вольфрам, "E" — селен, "H" — нікель, "С" — кремній, X — хром, "Ц" — цирконій. Цифра, що стоїть за буквою, характеризує кількість відповідного елемента, а та, що знаходиться в самому початку, вказує на вміст вуглецю (в сотих %). Якщо кількість останнього перевищує або дорівнює 1 %, то первісна цифра може не вказуватись взагалі. Літера "А", що стоїть в кінці марки, вказує на приналежність її до високоякісним. Та сама буква, що знаходиться в середині, повідомляє, що сталь легована азотом. Якщо ж вона стоїть спочатку, то це говорить про те, що перед вами автоматна сталь, що володіє підвищеною оброблюваністю. Особливо високоякісна сталь маркується літерою "Ш", доданої в кінці і написаної через дефіс. Марки, які не містять літер "А" або "Ш", є якісними. Також існують певні групи сталей, додатково маркирующиеся літерами:

  • "Е" - магнітні;
  • "Е" - електротехнічні;
  • "Р" - швидкорізальні;
  • "Ш" - шарикопідшипникові.

Звичайно, існує ще досить тонкощів, однак можна сказати, що російська маркування досить проста і зрозуміла, в той час як позначення, прийняті в інших країнах, набагато складніше.

Класифікація сталей за призначенням. Класифікація і маркування сталі

Не менш цікава класифікація сталей за призначенням, поговоримо про неї докладніше.

Конструкційні сталі

  • Будівельні — низьколеговані, а також звичайного якості, володіють хорошою зварюваністю.
  • Для холодної штамповки — листовий прокат з низьковуглецевих марок нормальної якості.
  • Цементовані — маловуглецеві і деякі леговані сталі застосовуються для виготовлення деталей, що зазнають динамічні навантаження і працюють з поверхневим зносом.
  • Покращувані піддаються термообробці (загартуванню і високому відпуску). Це середньовуглецеві, хромові, хромонікелеві, хромоникельмолибденовие, хромокремниемарганцевие, хромисті сталі з бором.
  • Високоміцні стали, у яких за допомогою термообробки і особливого складу досягнутий подвійний межа міцності в порівнянні із звичайними конструкційними аналогами.
  • Ресорно-пружинні можуть тривалий час зберігати пружність, достатній опір втоми і руйнування; до них відносять сталі, леговані хромом, бором, кремнієм, ванадієм і марганцем.
  • Шарикопідшипникові характеризуються високою зносостійкістю, міцністю та витривалістю, що досягається за допомогою високого (до 1 %) вмісту вуглецю і включення хрому.
  • Автоматні застосовуються для виробництва масових деталей, оброблюваних за допомогою верстатів-автоматів (болти, гвинти, шайби, гайки тощо); для полегшення обробки в такі стали додатково вводиться сірка, свинець, телур і селен, що призводить до отримання ламкої короткої стружки і знижує тертя.
  • Корозійно-стійкі — високохромистие сталі з вмістом нікелю; чим більше в них хрому, тим більше виражена стійкість до корозії, при цьому вміст вуглецю повинно бути мінімальним.
  • Зносостійкі використовуються в місцях абразивного тертя, ударів і високого тиску, наприклад ківш екскаватора або гусениці трактора.
Класифікація сталей за призначенням. Класифікація і маркування сталі

Інструментальні сталі

Класифікація сталей інструментального призначення також може бути представлена декількома пунктами:

  • для різальних інструментів застосовуються вуглецеві, леговані і швидкорізальні сталі;
  • для вимірювальних інструментів матеріал повинен насамперед володіти стабільністю розмірів, шліфуватися, мати достатню твердість і зносостійкість; для отримання таких характеристик інструментальну сталь часто піддають загартуванню і цементизации;
  • штампові сталі повинні володіти достатньою зносостійкістю, твердістю, теплостійкістю та прокаливаемостью; цю групу також можна додатково розділити на сталі для холодної, гарячої штамповки і валкові сталі.

Стали з особливими хімічними і фізичними властивостями

Класифікація сталей за призначенням. Класифікація і маркування сталі

Крім всіх перерахованих вище, існують також марки сталей з особливими властивостями:

  • електротехнічна сталь — сплав заліза і кремнію, іноді легованого алюмінієм; застосовується при виробництві магнітопроводів різноманітного електротехнічного обладнання;
  • суперинвар — сплав заліза, нікелю і кобальту, що застосовується при виготовленні високоточного обладнання;
  • жаростійкий — володіє підвищеною стійкістю проти руйнування при температурах від 900 °C, легується алюмінієм, кремнієм, нікелем;
  • жаростійка — застосовується для виготовлення деталей газотурбінних установок, такі стали покликані працювати в навантаженому стані при високій температурі протягом деякого часу.

Просмотр материалов ...

5. Термічна і хіміко-термічна обробка металів і їх сплавів (0)

    Термічна обробка полягає у зміні структури металів і сплавів при нагріванні, видержуванні та охолодженні, згідно спеціального режиму, і тим самим, у зміні властивостей останніх. В основі термічної обробки сталей лежить перекристалізація аустеніту при охолодженні. Перекристалізація може відбутися дифузійним або бездифузійним способами. У залежності від переохолодження аустеніт може перетворюватися у різні структури з різними властивостями.

    Повний дифузійний розпад аустеніту відбувається при незначному переохолодженні. У даному випадку утворюється пластинчастий перліт (механічна суміш фериту і цементиту вторинного). Якщо переохолодження збільшити до 373-393 0К, пластинки фериту і цементиту встигають вирости тільки до товщини (0,25-0,30 мнм), таку структуру називають сорбітом. Твердість сорбіту вища за твердість перліту.

    Коли переохолодження досягає 453-473 0К, ріст пластинок припиняється на товщині 0,1-0,15 мнм, така структура називається трооститом. Твердість трооститу вища від твердості сорбіту.

    При значному переохолодженні аустеніту (до 513 0К) дифузійний розпад його стає неможливим, перекристалізація має бездифузійний характер. У такому випадку утворюється перенасичений твердий розчин вуглецю в залізі, який називається мартенситом. Твердість мартенситу вища від твердості трооститу.

    Структура перліту є рівноважною, а структури сорбіту, трооститу і мартенситу є не рівноважними.

1. Види термічної обробки

    Розрізняють такі види термічної обробки: відпал, нормалізація, загартування і відпуск.

    Відпал. Відпалом називають нагрівання до високих температур, видержування і повільне охолодження разом з піччю.

    Розрізняють такі види відпалу: рекристалізаційний, дифузійний, на зернистий перліт, ізотермічний, повний і неповний. Відпал підвищує пластичність, зменшує внутрішні напруження, понижує твердість сталей.

    Нормалізація. Нормалізацією називають нагрівання до високої температури, видержування і повільне охолодження на повітрі. Нормалізація доводить сталь до дрібнозернистої та однорідної структури. Твердість і міцність сталі після нормалізації вищі, ніж після відпалу.

    Загартування сталі. Загартуванням називають нагрівання до високої температури, видержування і швидке охолодження (у воді, мінеральній оливі та інших охолоджувачах). Є такі види загартування: в одному охолоджувачі; перервне; ступінчасте; ізотермічне; поверхневе та ін. Загартування сталей забезпечує підвищення твердості, виникнення внутрішніх напружень і зменшення пластичності. Твердість збільшується у зв'язку з виникненням таких структур: сорбіт, троостит, мартенсит. Практично загартуванню піддається середньо- і високовуглецеві сталі.

    Відпуск сталі. Відпуском називають нагрівання до температур нижче 973 0К, видержування і повільне охолодження на повітрі.

    Розрізняють три види відпуску: низький (нагрівання до температури 473 0К; середній (573-773 0К); високий (773-973 0К). Після відпуску в деякій мірі зменшується твердість і внутрішні напруження, збільшується пластичність і в'язкість сталей. До цього приводить зміна структур після відпуску. Структура мартенситу сталі переходить відповідно в структуру трооститу і сорбіту. Чим вища температура відпуску, тим менша твердість відпущеної сталі і тим більша її пластичність та в'язкість.

    Відпуск, в основному, проводять після загартування для зняття внутрішніх напружень. Низький відпуск застосовують при виготовленні різального інструменту, вимірювального інструменту, цементованих деталей та ін..; середній - при виробництві ковальських штампів, пружин, ресор; високий - для багатьох деталей, що зазнають дії високих напружень (осі автомобілів, шатуни і т.п.).

2. Основи теорії хіміко-термічної обробки

    Хіміко-термічною обробкою називають насичення поверхні виробу різними елементами.

    Мета хіміко-термічної обробки - надати поверхневому шару стальних деталей підвищеної твердості, зносостійкості, жаростійкості, корозійної стійкості та ін. Для цього нагріті деталі поміщають у середовище, з якого в процесі дифузії у поверхневий шар переходять деякі елементи (вуглець, азот, алюміній, хром, кремній, бор та ін.).

    Такі елементи найкраще поглинаються тоді, коли вони виділяються в атомарному стані при розпаді якої-небудь сполуки. Подібний розпад найлегше відбувається у газах, тому їх і намагаються застосовувати для хіміко-термічної обробки сталі. Активізований атом елемента, що виділяється при розпаді, проникає у решітку кристалів сталі і утворює твердий розчин або хімічну сполуку. Найпоширенішими видами хіміко-термічної обробки сталі є: цементація, азотування, ціанування, дифузійна металізація.

    Цементацією називається насичення поверхні стального виробу вуглецем. Після загартування такого виробу він стає твердим на поверхні і в'язким у серцевині. Цементації піддають в основному деталі, які працюють на стирання і удар одночасно. Цементація придатна для маловуглецевих сталей. Є два види цементації: цементація твердим карбюризатором і газова цементація.

    Азотування - це насичення поверхневого шару виробу азотом, щоб надати йому високої твердості, підвищити зносостійкість та опір агресивним середовищем. Азотують леговану сталь, що містить алюміній, титан, ванадій, вольфрам, молібден або хром. Такі елементи, при взаємодії з азотом, утворюють тверді, стійкі в агресивних середовищах нітриди (TіN і т.п.).

    Ціанування - насичення поверхневого шару виробів одночасно вуглецем і азотом. Воно буває рідинне і газове, низькотемпературне (773-9730К), високотемпературне (1073-1123 0К). Ціанування в основному застосовують для обробки інструментів із швидкорізальної сталі, підвищується твердість і корозійна стійкість.

    Дифузійна металізація - насичення поверхневого шару виробу різними металами. Найбільш поширені: алютування (насичення алюмінієм); хромування (насичення хромом); нікелювання (насичення нікелем); силіціювання (насичення кремнієм). Дифузійна металізація проводиться для підвищення твердості, корозійної стійкості, жаростійкості.

3. Спосіб хіміко-термічної обробки деталей із металів та сплавів

    Спосіб хіміко-термічної обробки деталей із металів та сплавів, який включає їх обробку в парогазовому середовищі з наступним охолодженням до кімнатної температури на повітрі, який відрізняється тим, що обробку проводять перегрітою парою водного розчину 5-8 % алюмохромофосфатної солі при температурі 600±20°С протягом 30-60 хвилин, а охолодження проводять до температури 200°С разом з контейнером, а потім на повітрі. Винахід відноситься до металургії, а саме до зміцнення деталей із металів та сплавів дифузійним насиченням металічної поверхні в твердому стані елементами, які підвищують експлуатаційні властивості матеріалу, та може бути використаний в машинобудуванні, для отримання зносостійких покриттів.

4. Відпал

    Відпал - термічна обробка полягає в нагріванні металу до певних температур, витримка і подальшого дуже повільного охолодження разом з піччю. Застосовують для поліпшення обробки металів різанням, зниження твердості, отримання зернистої структури, а також для зняття напружень, усуває частково (або повністю) всякого роду неоднорідності, які були внесені в метал при попередніх операціях (механічна обробка, обробка тиском, лиття, зварювання), покращує структуру сталі.

   Відпал першого роду . Це відпал при якому не відбувається фазових перетворень, а якщо вони мають місце, то не роблять впливу на кінцеві результати, передбачені його цільовим призначенням. Розрізняють такі різновиди відпалу першого роду: Гомогенізаціонний і рекрісталлізаціонний.

    Гомогенізаціоний - це відпал з тривалою витримкою при температурі вище 950 С (Зазвичай 1100-1200 С) з метою вирівнювання хімічного складу.

    Рекрісталлізаціоний - це відпал наклепаної сталі при температурі, що перевищує температуру початку рекристалізації, з метою усунення наклепаного отримання певної величини зерна.

    Відпал другого роду. Це відпал, при якому фазові перетворення визначають його цільове призначення. Розрізняють такі види: повний, неповний, дифузійний, ізотермічний, світлий, нормалізований (Нормалізація), сфероідізірующій (на зернистий перліт).

    Повний відпал виробляють шляхом нагрівання сталі на 30-50 ° С вище критичної точки, витримкою при цій температурі і повільним охолодженням до 400-500 ° С зі швидкістю 200 ° С на годину вуглецевих сталей, 100 ° С на годину для низьколегованих сталей і 50 ° С на годину для високолегованих сталей. Структура стали після відпалу рівноважна, стійка.

    Неповний відпал проводиться шляхом нагрівання сталі до однією з температур, що знаходиться в інтервалі перетворень, витримкою і повільним охолодженням. Неповний відпал застосовують для зниження внутрішніх напружень, зниження твердості і поліпшення оброблюваності різанням.

    Дифузійний відпал . Метал нагрівають до температур 1100-1200 Вє С, так як при цьому більш повно протікають дифузійні процеси, необхідні для вирівнювання хімічного складу.

    Ізотермічний відпал полягає в наступному: сталь нагрівають, а потім швидко охолоджують (частіше перенесенням в іншу піч) до температури, що знаходиться нижче критичної на 50-100 С. В основному застосовується для легованих сталей. Економічно вигідний, так як тривалість звичайного відпалу (13 - 15) год, а ізотермічного відпалу (4 - 6) год полягає в нагріванні сталі вище критичної температури на 20 - 30 ° С, витримці при цій температурі і повільному охолодженні.

    Світлий відпал здійснюється за режимами повного або неповного відпалу із застосуванням захисних атмосфер в печах з частковим вакуумом. Застосовується з метою захисту поверхні металу від окислення і обезуглероживания.

    Нормалізація - полягає в нагріванні металу до температури на (30-50) ° С вище критичної точки і наступного охолодження на повітрі. Призначення нормалізації різна залежно від складу сталі. Замість відпалу низьковуглецевих сталі піддають нормалізації. Для середньовуглецевих сталей нормалізацію застосовують замість гарту і високого відпустки. Високовуглецеві стали піддають нормалізації з метою усунення цементітной сітки. Нормалізацію з подальшим високим відпусткою застосовують замість відпалу для виправлення структури легованих сталей. Нормалізація в порівнянні з відпалом - Більш економічна операція, так як не вимагає охолодження разом з піччю.

    Загартування - це нагрів до оптимальної температури, витримка і подальше швидке охолодження з метою отримання нерівноважної структури.

    У результаті загартування підвищується міцність і твердість і понижується пластичність сталі. Основні параметри при загартування - температура нагріву і швидкість охолодження. Критичною швидкістю гарту називається швидкість охолодження, забезпечує отримання структури - мартенсит або мартенсит і залишковий аустеніт.

    У Залежно від форми деталі, марки сталі та необхідного комплексу властивостей застосовують різні способи гарту.

    Загартування в одному охолоджувачі. Деталь нагрівають до температури загартування і охолоджують в одному охолоджувачі (вода, масло).

    Загартування в двох середовищах (переривчаста гарт) - це гарт при якій деталь охолоджують послідовно в двох середовищах: перше середовище - охолоджуюча рідина (вода), друге - повітря або масло.

    Ступеневе гартування. Нагріту до температури гарту деталь охолоджують в розплавлених солях, після витримки в плині часу необхідного для вирівнювання температури по всьому перетину, деталь охолоджують на повітрі, що сприяє зниженню гартівних напруг.

    Ізотермічне гартування так само, як і ступінчасте, проводиться у двох охолоджуючих середовищах. Температура гарячої середовища (соляні, селітрові або лужні ванни) різна: вона залежить від хімічного складу сталі, але завжди на (20-100) ° С вище точки мартенситного перетворення для даної сталі. Остаточне охолодження до кімнатної температури проводиться на повітрі.

    Ізотермічне гартування широко застосовується для деталей з високолегованих сталей. Після ізотермічного загартування сталь набуває високі міцнісні властивості, тобто поєднання високої в'язкості з міцністю.

    Гартування з самоотпуском має широке застосування в інструментальному виробництві. Процес полягає в тому, що деталі витримуються в охолоджуючої середовищі не до повного охолодження, а в певний момент витягуються з неї з метою збереження в серцевині деталі деякої кількості тепла, за рахунок якого здійснюється подальший відпустку.

5. Відпуск сталі

    Відпуск сталі є завершальною операцією термічної обробки, формує структуру, а отже, і властивості сталі. Відпустка полягає в нагріванні сталі до різних температур (залежно від виду відпустки, але завжди нижче критичної точки), витримці при цій температурі і охолодженні з різними швидкостями. Призначення відпустки - зняти внутрішні напруження, що виникають у процесі загартування, і отримати необхідну структуру.

    Залежно від температури нагріву загартованої деталі розрізняють три види відпустки: високий, середній і низький.

    Висока відпустка проводиться при температурах нагрівання вище (350-600)° С, але нижче критичної точки; таку відпустку застосовується для конструкційних сталей.

    Середня відпустка проводиться при температурах нагрівання (350 - 500)° С; таку відпустку широко застосовується для пружинного і ресорної сталей.

    Низька відпустка проводиться при температурах (150-250)° С. Твердість деталі після гарту майже не змінюється; низький відпустку застосовується для вуглецевих і легованих інструментальних сталей, для яких необхідні висока твердість і зносостійкість.

    Контроль відпустки здійснюється за кольорами мінливості, які з'являтимуться на поверхні деталі.

6. Старіння

    Старіння - це процес зміни властивостей сплавів без помітної зміни мікроструктури. Відомі два види старіння: термічне і деформаційне.

    Термічне старіння протікає в результаті зміни розчинності вуглецю в залізі в залежності від температури.

    Якщо зміна твердості, пластичності і міцності протікає при кімнатній температурі, то таке старіння називається природним.

    Якщо ж процес протікає при підвищеній температурі, то старіння називається штучним.

     Деформаційне (Механічне) старіння протікає після холодної пластичної деформації.

 7.Обробка холодом

    Новий вид термічної обробки, для підвищення твердості стали шляхом перекладу залишкового аустеніту загартованої сталі в Мартенсом. Це виконується при охолодженні сталі до температури нижньої мартенситної точки.

Методи поверхневого зміцнення

    Поверхневим загартуванням називають процес термічної обробки, представляє собою нагрів поверхневого шару сталі до температури вище критичною і наступне охолодження з метою отримання в поверхневому шарі структури мартенситу.

    Розрізняють такі види: індукційне гартування; гартування в електроліті, гартування при нагріванні струмом високої частоти (ТВЧ), гартування з газополуменевим нагріванням.

    Індукційне гартування засноване на фізичному явищі, сутність якого полягає в тому, що електричний струм високої частоти, проходячи по провіднику, створює навколо нього електромагнітне поле. На поверхні деталі, вміщеній в цьому полі, індукуються вихрові струми, викликаючи нагрівання металу до високих температур. Це забезпечує можливість протікання фазових перетворень.

    Залежно від способу нагрівання індукційне гартування підрозділяється на три види:

одночасний нагрів і гартування всієї поверхні (використовується для дрібних деталей);

послідовний нагрів і гартування окремих ділянок (використовується для колінчастих валів і подібних їм деталей);

безперервно-послідовний нагрів і гартування переміщенням (використовується для довгих деталей).

    Газополум'яне гартування. Процес газополум'яного гартування полягає у швидкому нагріванні поверхні деталі ацетилено-кисневим, газокисневі або киснево-гасових полум'ям до температури гартування з подальшим охолодженням водою або емульсією.

    Загартування в електроліті. Процес загартування в електроліті полягає в наступному: у ванну з електролітом (5-10% розчин кальцинованої солі) опускають гартувати деталь і пропускають струм напругою 220-250 В. У результаті чого відбувається нагрівання деталі до високих температур.

8.Термічна обробка чавуну

    Термічну обробку чавунів проводять з метою зняття внутрішніх напружень, що виникають при лиття і викликають з плином часу зміни розмірів і форми виливки, зниження твердості і поліпшення оброблюваності різанням, підвищення механічних властивостей. Чавун піддають відпалу, нормалізації, загартуванню та відпуску, а також деякими видами хіміко-термічної обробки (азотуванню, алітуванню, хромуванню).

    Відпал для зняття внутрішніх напружень . Цьому відпалу піддають чавуни при наступних температурах: сірий чавун з пластинчастим графітом (500 - 570) °С; високоміцний чавун з кулястим графітом (550 - 650) ° С; низьколегований чавун (570 - 600) ° С; високолегований чавун (620 - 650) ° С. При цьому відпалі фазових перетворенні не відбувається, а знімаються внутрішньо напруги, підвищується в'язкість, виключається викривлення і утворення тріщин в процесі експлуатації.

    Зм'якшуючий відпал (відпал графітізіруючий низькотемпературний ). Проводять для поліпшення оброблюваності різанням і підвищення пластичності. Його здійснюють тривалої витримкою при (680 - 700) ° С або повільним охолодженням виливків при (760 - 700) °С. Для деталей складної конфігурації охолодження повільне, а для деталей простої форми - прискорене.

    Відпал графітізіруючий , в результаті якого з білого чавуну отримують ковкий чавун.

    Нормалізацію застосовують для збільшення пов'язаного вуглецю, підвищення твердості, міцності і зносостійкості сірого, ковкого і високоміцного чавунів. При нормалізації чавун (виливки) нагрівають вище температур інтервалу перетворення (850 - 950) °С і після витримки охолоджують на повітрі.

    Гартуванню піддають сірий, ковкий і високоміцний чавун для підвищення твердості, міцності і зносостійкості. За способом виконання гарт чавуну може бути об'ємною безперервної, ізотермічної та поверхневої.

    При об'ємної безперервної загартуванню чавун нагрівають до температури (850 - 950) ° С. Потім витримують для прогріву і повного розчинення вуглецю. Охолодження здійснюють у воді або маслі. Після гарту проводять відпустку при температурі (200 - 600) ° С. В результаті підвищується твердість, міцність і зносостійкість чавуну.

    При ізотермічному загартуванню чавун нагрівають так само, як і при об'ємної безперервно ї загартуванню, витримують від 10 до 90 хвилин і охолоджують у розплавленої солі при (200 - 400) °С, і після витримки охолоджують на повітрі.

    Поверхневий гарт з нагріванням поверхневого шару киснево-ацетиленовим полум'ям, струмами високої частоти або в електроліті. Температура нагріву (900 - 1000) ° С. Охолодження у воді, маслі або олійною емульсії.

    Старіння застосовують для стабілізації розмірів литих чавунних деталей, запобігання викривлення і зняття внутрішніх напруг. Зазвичай старінні проводять після грубої механічної обробки. Розрізняють два види старіння: природне і штучне.

    Природне старіння здійснюється на відкритому повітрі або в приміщенні. Вироби після лиття витримуються протягом 6 - 15 місяців.

    Штучне старіння здійснюється при підвищених температурах; тривалість - декілька годин. При штучному старінні виливки чавуну завантажують у піч, нагріту до (100 - 200) °С, нагрівають до температури (550 - 570) ° С зі швидкістю (30 - 60) °С в годину, витримую 3 - 5 годин і охолоджують разом з піччю зі швидкістю (20 - 40) ° С в годину до температури (150 - 200) ° С, а потім охолоджують на повітрі.

Хіміко-термічна обробка чавуну

    Для підвищення поверхневої твердості і зносостійкості сірі чавуни піддають азотуванню. Найчастіше азотіруют сірі перлітні чавуни, леговані хромом, молібденом, алюмінієм. Температура азотування (550 - 580) ° С, час витримки 30 - 70 годин. Крім азотування, підвищення поверхневої твердості і зносостійкості легованого сірого перлітного чавуну можна досягти газовим і рідинним ціануванням при температурі 570° С. Для підвищення жаростійкості чавунні виливки можна піддавати алітуванню, а для отримання високої корозійної стійкості в кислотах - сіліцірованіе.

 Термічна обробка сплавів кольорових металів

Алюмінієві сплави

    Алюмінієві сплави піддаються трьом видам термічної обробки: відпалу, загартування і старінню. Основними видами відпалу є: дифузійний, рекрісталлізаціонний і термічно зміцнених сплавів.

    Гомогенізацію застосовують для вирівнювання хімічної мікронеоднорідності зерен твердого розчину. Для виконання гомогенізації алюмінієві сплави нагрівають до (450 - 520) ° С і витримують при цих температурах від 4 до 40 годин; після витримки - охолодження разом з піччю або на повітря. У результаті цього структура стає більш однорідною і підвищується пластичність.

    Рекрісталлізаціоний відпал для алюмінію і сплавів на його основі застосовують набагато ширше, ніж для сталі. Це пояснюється тим, що такі метали, як алюміній і мідь, а так само багато сплавів на їх основі, не упрочнюються загартуванням і підвищення механічних властивостей може бути досягнуто тільки холодною обробкою тиском, а проміжної операцією при такій обробці є рекрісталлізаціоний відпал. Температура рекристаллизационого відпалу алюмінієвих сплавів (300 - 500) С витримка 0,5 - 2 години.

    Відпал термічно зміцнених сплавів застосовують для повного зняття зміцнення, він проводиться при температурах (350 - 450) °С з витримкою 1 - 2 години і подальшим досить повільним охолодженням.

    Після гартування міцність сплаву дещо підвищується, а пластичність не змінюється. Після гарту алюмінієві сплави піддають старінню , при якому відбувається розпад пересиченого твердого розчину.

Деформуємі алюмінієві сплави

    У загартованому стані дуралюміни пластичні і легко деформуються. Після гартування і природного або штучного старіння міцність дуралюмина різко підвищується.

Ливарні алюмінієві сплави

    Для ливарних алюмінієвих сплавів використовують різні види термічної обробки залежно від хімічного складу. Для зміцнення ливарні алюмінієві сплави піддають гартуванню з отриманням пересичені твердого розчину і штучному старінню, а також тільки загартуванню без старіння з отриманням в загартованому стані стійкої твердого розчину.

Магнієві сплави

    Магнієві сплави, так само як і алюмінієві, піддають відпалу, загартування і старіння. Для вирівнювання хімічної мікронеоднорідност і зерен твердого розчину шляхом дифузії зливки магнієвих сплавів піддають гомогенізації при температурах (350 - 400) °С з витримкою 18 - 24 години. Напівфабрикати деформівних магнієвих сплавів піддають рекрісталлізаціонний відпал при температурі 350° С, а також при низьких температурах (150 - 250) ° С відпалу для зняття залишкових напруг.

    Магнієві сплави піддають загартуванню , або загартуванню і штучного старінню . При температурі 20°С у загартованих магнієвих сплавах ніяких змін не відбувається, тобто вони не схильні до природного старіння.

Мідь і мідні сплави

    Термічна обробка міді. Деформування міді супроводжується підвищенням її міцності і пониженням пластичності. Для підвищення пластичності мідь піддають рекрісталлізаціоному відпалу при (500 - 600) ° С, в результаті якого пластичність різко підвищується, а міцність знижується.

    Термічна обробка латуней . Вони піддаються тільки рекрісталлізаціоному відпалу при (600 - 700) ° С (для зняття наклепу). Охолоджують латунь при відпалі на повітрі або для прискорення охолодження і кращого відділення загартовують у воді. Для латунних деталей, що мають після деформації залишкові напруги, в умовах вологої атмосфери характерне явище мимовільного розтріскування. Щоб цього уникнути латунні деталі піддають низькотемпературного відпалу при (200 - 300) °С, в результаті чого залишкові напруги знімаються, а наклеп залишається. Низькотемпературного відпалу особливо необхідно піддавати алюмінієві латуні, які схильні до мимовільного розтріскування.

     Термічна обробка бронз . Для вирівнювання хімічного складу бронзи піддають гомогенізації при (700 - 750) °С з наступним швидким охолодженням. Для зняття внутрішніх напружень виливки віджигають при 550° С. Для відновлення пластичності між операціями холодної обробки тиском піддають рекрісталлізаціоний відпал при (600 - 700) ° С.

    Алюмінієві бронзи з вмістом алюмінію від 8 до 11%, які відчувають при нагріві і охолодженні фазову перекристалізації, можуть піддаватися загартуванню. У результаті загартування підвищується міцність і твердість, але знижується пластичність. Після гарту слід відпустку при (400 - 650) °С залежно про необхідних властивостей. Також піддають гомогенізації, а деформуються напівфабрикати - рекрісталлізаціоний відпал при (650 - 800) °С.

Титанові сплави

    Титанові сплави піддають рекрісталлізаціоний відпал і відпал з фазовою перекристаллізацією, а також зміцненню термічною обробкою - загартуванням і старінням. Для підвищення зносостійкості і задіростойкості титанові сплави піддають азотуванню, цементації або окислення.

   Рекрісталлізаціоний відпал застосовують для титану і сплавів для зняття наклепу після холодної обробки тиском. Температура рекристаллизационого відпалу (520 - 850) ° С залежно від хімічного складу сплаву і виду напівфабрикату.

    Відпал з фазової перекристалізації застосовують з метою зниження твердості, підвищення пластичності, подрібнення зерна, усунення структурної неоднорідності. Застосовують простий, ізотермічний і подвійний відпал; температура нагрівання при відпалі (750 - 950) ° С залежно від сплаву.

    При ізотермічному відпалі після витримки при температурі відпалу деталі охолоджують до (500 - 650) ° С (Залежно від сплаву) в тій же печі йди переносять в іншу піч і витримують певний час, і охолоджують на повітрі. При ізотермічному відпалі скорочується тривалість відпалу, а пластичність виходить більш високою.

    При подвійному відпалі деталі нагрівають до температури відпалу, витримують і охолоджують на повітрі. Потім повторно нагріваю до (500 - 650) °С, витримують і охолоджують на повітрі. Подвійний відпал порівняно з ізотермічним підвищує межу міцності при незначному зниженні пластичності і скорочує тривалість обробки.

    З усіх видів хіміко-термічної обробки титанових сплавів найбільше поширення отримало азотування, виконуються в середовищі азоту або в суміші азоту та аргону при температурах (850 - 950) °С протягом 10 - 50 годин. Деталі з титанових сплавів після азотування володіють хорошими антифрикційними властивостями.

Просмотр материалов ...

6. Тверді сплави (0)

  Тверді сплави виготовляють методами порошкової металургії. Основні компоненти: карбід вольфраму (WC), карбід титану (ТіС) і карбід танталу (ТаС), зв'язкою служить металічний кобальт, нікель, або молібден. Теплостійкість твердих сплавів різних марок становить 800-1100 оС, що позволяє значно підняти швидкість різання (до 150-200 м/хв). Недолік їх - відносно низька міцність на згин узг=0,9-1,6 гПа, а у швидкорізальної сталі узг=3-3,5 гПа. Міцність на стиск уст=4-6гПа, а твердість 90-96 НRA.

    Твердими сплавами називають стійкі до спрацювання і вельми тверді металеві матеріали, що містять у структурі велику кількість карбідів вольфраму, титану, танталу, хрому, заліза. Цим карбідам властива висока твердість у рівноважному стані. Самі по собі карбіди не можуть утворити міцних компактних виробів через їх крихкість, тому для їх зв'язки використовують кобальт, нікель, залізо.

    

1. Типи твердих сплавів

Розрізняють спечені й литі тверді сплави. Головною особливістю спечених твердих сплавів є те, що вироби з них отримують методами порошкової металургії і вони піддаються тільки обробці шліфуванням або фізико-хімічних методів обробки (лазер, ультразвук, травлення в кислотах та ін), а литі тверді сплави призначені для наплавлення на оснащується інструмент і проходять не тільки механічну, але часто і термічну обробку (гарт, відпал, старіння та ін). Порошкові тверді сплави закріплюються на оснащуються інструментами методами пайки або механічним закріпленням. 
Тверді сплави розрізняють по металах карбідів, в них присутніх: вольфрамові - ВК2, ВК3, ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титано-вольфрамові - Т30К4, Т15К6, Т14ДО8, Т5К10 , Т5К12В; титано-тантало-вольфрамові - ТТ7К12, ТТ10К8Б.Безвольфрамовие ТНМ20, ТНМ25, ТНМ30

За хімічним складом тверді сплави класифікують:

  • вольфрамокобальтовие тверді сплави (ВК);
  • титановольфрамокобальтовые тверді сплави (ТК);
  • титанотанталовольфрамокобальтовые тверді сплави (ТТК).

Тверді сплави по призначенню діляться (класифікація ІСО) на:

  • Р - для сталевих виливків і матеріалів, при обробці яких утворюється зливна стружка;
  • М - для обробки важкооброблюваних матеріалів;
  • К - для обробки легованих сталей та інших сплавів.

Через дефіцит вольфраму розроблена група безвольфрамових твердих сплавів, званих керметів. Ці сплави містять в своєму складі карбіди титану (TiC), карбонітріди титану (TiCN), пов'язані нікельмолібденових основою. Технологія їх виготовлення аналогічна вольфрамосодержащім твердим сплавів.

Ці сплави в порівнянні з вольфрамовим твердими сплавами мають меншу міцність на вигин, ударну в'язкість, чутливі до перепаду температур через низьку теплопровідності, але мають переваги - підвищену теплостійкість (1000 C) і низьку схвативаемость з робочою матеріалами, завдяки чому не схильні до наростообразованію при різанні. Тому їх рекомендують використовувати для чистового і получістового точінняфрезерування. За призначенням відносяться до групи Р класифікації ІСО.

 

1.1. Властивості твердих сплавів

Платівки з твердого сплаву мають HRA 86-92 мають високу зносостійкість і красностойкостью (800-1000 C), що дозволяє вести обробку з швидкостями різання до 800 м / хв.

1.2. Спечені тверді сплави

    Тверді сплави виготовляють шляхом спікання суміші порошків карбідів і кобальту. Порошок попередньо виготовляють методом хімічного відновлення (1-10 мкм), змішують у відповідному співвідношенні і пресують під тиском 200-300 кгс / см , а потім спекают в формах, які відповідають розмірам готових пластин, при температурі 1400-1500 C, в захисній атмосфері . Термічній обробці тверді сплави не піддаються, оскільки відразу ж після виготовлення володіють необхідним комплексом основних властивостей.

    Композиційні матеріали, що складаються з металлоподобного сполуки, цементованого металом або сплавом. Їх основою найчастіше є карбіди вольфраму або титану, складні карбіди вольфраму і титану (часто також і танталу), карбонітріди титану, рідше - інші карбіди, борид і т. п. В якості матриці для утримання зерен твердого матеріалу у виробі застосовують так звану "зв'язку" - метал або сплав. Звичайно як "зв'язки" використовують кобальт (кобальт є нейтральним елементом по відношенню до вуглецю, він не утворює карбіди і не руйнує карбіди інших елементів), рідше - нікель, його сплав з молібденом (нікель-молібденова зв'язка).

 

1.2.1. Отримання твердих сплавів методом порошкової металургії

  1. Отримання порошків карбідів і кобальту методом відновлення з оксидів.
  2. Подрібнення порошків карбідів і кобальту (виробляється на кульових млинах протягом 2-3 діб) до 1-2 мікрон.
  3. Просіювання і повторне подрібнення при необхідності.
  4. Приготування суміші (порошки змішують в кількостях, що відповідають хімічному складу виготовляється сплаву).
  5. Холодне пресування (в суміш додають органічний клей для тимчасового збереження форми).
  6. Спікання під навантаженням (гаряче пресування) при 1400 C (при 800-850 C клей згорає без залишку). При 1400 C кобальт плавиться і змочує порошки карбідів, при подальшому охолодженні кобальт кристалізується, поєднуючи між собою частки карбідів.

 

1.2.2. Номенклатура спечених твердих сплавів

Тверді сплави умовно можна розділити на три основні групи:

  • вольфрамосодержащіе тверді сплави
  • тітановольфрамосодержащіе тверді сплави
  • тітанотанталовольфрамовие тверді сплави

Кожна з перерахованих вище груп твердих сплавів підрозділяється в свою чергу на марки, що розрізняються між собою за хімічним складом, фізико-механічними і експлуатаційними властивостями.

Деякі марки сплаву, маючи однаковий хімічний склад, відрізняються розміром зерен карбідних складових, що визначає відмінність їх фізико-механічних та експлуатаційних властивостей, а звідси і областей застосування.

Властивості марок твердих сплавів розраховані таким чином, щоб випускається асортимент міг максимально задовольнити потреби сучасного виробництва. При виборі марки сплаву слід враховувати: область застосування сплаву, характер вимозі, що пред'являються до точності оброблюваних поверхонь, стан обладнання та його кінематичні і динамічні дані.

Позначення марок сплавів побудовано за наступним принципом:

1 група - сплави містять карбід вольфраму і кобальт. Позначаються буквами ВК, після яких цифрами вказується процентний вміст в сплаві кобальту. До цієї групи відносяться такі марки:

ВКЗ, ВКЗМ, ВК6, ВК6М, ВК60М, ВК6КС, ВК6В, ВК8, ВК8ВК, ВК8В, ВК10КС, ВК15, ВК20, ВК20КС, ВК10ХОМ, ВК4В.

2 група - тітановольфрамовие сплави, що мають у своєму складі карбід титану, карбід вольфраму і кобальт. Позначається буквами ТК, при цьому цифра, що стоїть після букв Т позначає% вміст карбідів титану, а після букви К - вміст кобальту. До цієї групи відносяться такі марки: Т5К10, Т14ДО8, Т15К6, ТЗОК4.

3 група - тітанотанталовольфрамовие сплави, що мають у своєму складі карбід титану, танталу і вольфраму, а також кобальт і позначаються буквами ТТК, при цьому цифра, що стоїть після ТТ% вміст карбідів титану і танталу, а після букви К - вміст кобальту. До цієї групи відносяться такі марки: ТТ7К12, ТТ20К9.

4 група - сплави з зносостійкими покриттями. Мають буквене позначення ВП. До цієї групи відносяться такі марки: ВП3115 (основа ВК6), ВП3325 (основа ВК8), ВП1255 (основа ТТ7К12).

Тверді сплави застосовуються для обробки металів різанням: ВК6, ВКЗМ, ВК6М, ВК60М, ВК8, ВК10ХОМ, ТЗОК4, Т15К6, Т14ДО8, Т5К10, ТТ7К12, ТТ20К9.

Тверді сплави застосовуються для бесстружковой обробки металів і деревини, швидкозношуваних деталей машин, приладів і пристроїв: ВКЗ, ВКЗМ, ВК6, ВК6М, ВК8, ВК15, ВК20, ВК10КС. ВК20КС.

Тверді сплави застосовуються для оснащення гірського інструменту: ВК6В, ВК4В, ВК8ВК, ВК8, ВК10КС, ВК8В, ВК11ВК, ВК15.

    

Литі тверді сплави отримують методом плавки і лиття.

 Застосування

    Тверді сплави в даний час є поширеним інструментальним матеріалом, широко застосовуваним в інструментальній промисловості. За рахунок наявності в структурі тугоплавких карбідів твердосплавний інструмент має високу твердість HRA 80-92 (HRC 73-76), теплостійкістю (800-1000 C), тому ними можна працювати зі швидкостями, в кілька разів перевищують швидкості різання для швидкорізальних сталей. Однак, на відміну від швидкорізальних сталей, тверді сплави мають знижену міцність (σі = 1000-1500 МПа), не володіють ударною в'язкістю. Тверді сплави нетехнологічно: через велику твердості з них неможливо виготовити цілісний фасонний інструмент, до того ж вони обмежено шліфуються - тільки алмазним інструментом, тому тверді сплави застосовують у вигляді пластин, які або механічно закріплюються на державках інструменту, або припаюються до них.

Тверді сплави зважаючи на свою високу твердості застосовуються в наступних областях:

  • Обробка різанням конструкційних матеріалів: різціфрезисвердлапротяжки та інший інструмент.
  • Оснащення вимірювального інструмента: оснащення точних поверхонь мікрометричного обладнання та опор ваг.
  • Таврування: оснащення робочої частини клейм.
  • Волочіння: оснащення робочої частини волок.
  • Штампування: оснащення штампів і матриць (вирубних, видавлювання та ін.).
  • Прокатка: твердосплавні валки (виконуються у вигляді кілець з твердого сплаву, що одягаються на металеве підстава)
  • Гірничодобувне обладнання: напайка спечених і наплавлення литих твердих сплавів.
  • Виробництво зносостійких підшипників: шарики та ролики, обойми і напилення на сталь.
  • Рудообрабативающее обладнання: оснащення робочих поверхонь.
  • Газотермічне напилення зносостійких покриттів

Просмотр материалов ...

7. Кольорові метали та сплави (0)

За фізичними властивостями і призначенню кольорові метали умовно можна розділити на благородні, важкі, легкі й рідкі.

До шляхетних металів відносять метали з високою корозійною стійкістю: золотоплатинапаладійсрібло, іридій, родій, рутеній і осмій. Їх використовують у вигляді сплавів в електротехніці, електровакуумної техніці, приладобудуванні, медицині і т.д.

До важких відносять метали з великою щільністю: свинець, мідьхромкобальт і т.д. Важкі метали застосовують головним чином як легуючі елементи, а такі метали, як мідь, свинець, цинк, кобальт частково, використовуються і в чистому вигляді.

До легких металів відносяться метали з щільністю менше 5 грам на кубічний сантиметр: літійкалійнатрій, алюміній і т.д. Їх застосовують як розкислювачів металів і сплавів, для легування, в піротехніці, фотографії, медицині і т.д.

До рідкісних металів відносять метали з особливими властивостями: вольфраммолібденселенуран і т.д.

До групи широко застосовуються кольорових металів відносяться алюмінійтитан, магніймідьсвинець, олово.

Кольорові метали мають цілу низку дуже цінних властивостей. Наприклад, високу теплопровідність (алюміній, мідь), дуже малою щільністю (алюміній, магній), високою корозійною стійкістю (титан, алюміній).

За технологією виготовлення заготовок і виробів кольорові сплави діляться на деформуються і литі (іноді спечені).

На підставі цього поділу розрізняють металургію легких металів і металургію важких металів.

1. Мідь та її сплави

Мідь - метал червоного, в зламі рожевого кольору. Мідь належить до металів, відомим з глибокої давнини.

Технічно чиста мідь володіє високою пластичністю і корозійною стійкістю, високою електропровідністю і теплопровідністю (100% чиста мідь-еталон, то 65%-алюміній, 17% залізо), а також стійкістю проти атмосферної корозії. Дозволяє використовувати її в якості покрівельного матеріалу відповідальних будівель.

Температура плавлення міді 1083 ° С. Кристалічна решітка ГЦК. Щільність міді 8,94 г / см 3. Завдяки високій пластичності мідь добре обробляється тиском (з міді можна зробити фольгу товщиною 0,02 мм), погано різанням.

Ливарні властивості низькі через велику усадки.

На властивості міді великий вплив мають домішки: всі, крім срібла та берилію погіршують електропровідність.

Вартість чистої міді постійно підвищується, а світові запаси мідної руди, за різними оцінками, виснажаться в найближчі 10-30 років.

Мідь маркують буквою М, після якої стоїть цифра. Чим більше цифра, тим більше в ній домішок. Найвища марка М00 - 99,99% міді, М4 - 99% міді.

Після позначення марки вказують спосіб виготовлення міді: к-катодна, б - безкиснева, р - раскисленная. Мідь вогневого рафінування не позначається.

М00к - технічно чиста катодна мідь, що містить не менше 99,99% міді і срібла.

МОЗ - технічно чиста мідь вогневого рафінування, містить не менше 99,5% міді.

1.1 Сплави міді

У техніці застосовують 2 великі групи мідних сплавів: латуні та бронзи.

1.1.1 Латуні

Латуні - сплави міді з цинком (до 50% Zn) і невеликими добавками алюмінію, кремнію, свинцю, нікелю, марганцю (ГОСТ 15527-70, ГОСТ 17711-80). Мідні сплави, призначені для виготовлення деталей методами лиття, називають ливарними, а сплави, призначені для виготовлення деталей пластичним деформуванням - сплавами, оброблюваними тиском.

Латуні дешевше міді і перевершують її по міцності, в'язкості і корозійної стійкості. Володіють хорошими ливарні властивості.

Латуні, застосовуються в основному для виготовлення деталей штампуванням, витяжкою, розкочуванням, гнуття, тобто процесами, які вимагають високої пластичності матеріалу заготовки. З латуні виготовляються гільзи різних боєприпасів.

У залежності від числа компонентів розрізняють прості (подвійні) і спеціальні (багатокомпонентні) латуні.

Прості латуні містять тільки Cu і Zn.

Спеціальні латуні містять від 1 до 8% різних легуючих елементів (Л.Е.), що підвищують механічні властивості і корозійну стійкість.

Al, Mn, Ni підвищують механічні властивості і корозійну стійкість латуней. Свинець покращує оброблюваність різанням. Крем'янисті латуні мають гарну жидкотекучестью і зварюваністю.

1.1.2 Бронзи

Бронзи - це сплави міді з оловом (4-33% Sn), свинцем (до 30% Pb), алюмінієм (5-11% AL), кремнієм (4-5% Si), сурмою, фосфором та іншими елементами.

Бронзи - це будь-мідний сплав, крім латуні. Це сплави міді, в яких цинк не є основним легирующим елементом. Загальною характеристикою бронз є висока корозійна стійкість і антифрикційні (від анти-і лат. Frictio-тертя). Бронзи відрізняються високою корозійною стійкістю і антифрикційними властивостями. З них виготовляють вкладиші підшипників ковзання, вінці черв'ячних зубчастих коліс і інші деталі.

Високі ливарні властивості деяких бронз дозволяють використовувати їх для виготовлення художніх виробів, пам'ятників, дзвонів.

За хімічним складом поділяються на олов'яні бронзи і без олов'яні (спеціальні).

Олов'яні бронзи мають високі механічні, ливарними, антифрикційними властивостями, корозійною стійкістю, оброблюваністю різанням, але мають обмежене застосування через дефіцитності і дорожнечі олова.

Спеціальні бронзи не тільки служать замінниками олов'яних бронз, а й у ряді випадків перевершують їх за своїми механічними, антикорозійним і технологічним властивостям:

Алюмінієві бронзи - 5-11% алюмінію. Мають більш високі механічні та антифрикційні властивості, ніж в олов'яних бронз, але ливарні властивості - нижче. Для підвищення механічних і антикорозійних властивостей вводять залізо, марганець, нікель (наприклад, БрАЖ9-4). З цих бронз виготовляють різні втулки, що направляють, дрібні відповідальні деталі.

Берилієві бронзи містять 1,8-2,3% берилію відрізняються високою твердістю, зносостійкістю і пружністю (наприклад, БрБ2, БрБМН1, 7). Їх застосовують для пружин в приладах, які працюють в агресивному середовищі.

Крем'янисті бронзи - 3-4% кремнію, леговані нікелем, марганцем, цинком за механічними властивостями наближаються до сталей.

Свинцюваті бронзи містять 30% свинцю, є хорошими антифрикційними сплавами і йдуть на виготовлення підшипників ковзання.

Мідні сплави позначають початковими буквами їх назви (Бр або Л), після чого слідують перші літери назв основних елементів, що утворять сплав, і цифри, що вказують кількість елементу у відсотках.

Приклади:

  • БрА9Мц2Л - бронза, що містить 9% алюмінію, 2% Mn, решта Cu («Л» вказує, що сплав ливарний);

  • ЛЦ40Мц3Ж - латунь, що містить 40% Zn, 3% Mn, ~ l% Fe, решта Cu;

  • Бр0Ф8 ,0-0, 3 - бронза містить 8% олова і 0,3% фосфору;

  • ЛАМш77-2-0, 05 - латунь містить 77% Cu, 2% Al, 0,055 миш'яку, решта Zn (у позначенні латуні, призначеної для обробки тиском, перше число вказує на вміст міді).

У нескладних за складом латунях вказують тільки вміст у сплаві міді:

  • Л96 - латунь містить 96% Cu і ~ 4% Zn (томпак);

  • Лб3 - латунь що містить 63% Cu і 37% Zn.

Висока вартість міді і сплавів на її основі призвела в 20 столітті до пошуку матеріалів для їх заміни. В даний час їх успішно замінюють пластиками, композиційними матеріалами.

2. Алюміній і його сплави

Алюміній - метал сріблясто-білого кольору. Температура плавлення 650 ° С. Алюміній має кристалічну ГЦК грати. Алюміній має електричнупровідність, складовою 65% електричної провідності міді. Алюміній займає 3 місце з поширення в земній корі після кисню і кремнію. Алюміній стійкий проти атмосферної корозії завдяки утворенню на його поверхні щільної окисної плівки. Найбільш важливою особливістю алюмінію є низька щільність - 2,7 г / см 3 проти 7,8 г / см 3 для заліза і 8,94 г / см 3 для міді. Має хорошу тепло-і електропровідність. Добре обробляється тиском.

Маркується літерою А і цифрою, що вказує на вміст алюмінію. Алюміній особливої ​​чистоти має марку А999 - вміст Al в цій марці 99,999%. Алюміній високої чистоти - А99, А95 містять Al 99,99% і 99,95% відповідно. Технічний алюміній - А85, А8, А7 і ін

Застосовується в електропромисловості для виготовлення провідників струму, в харчовій і хімічній промисловості. Алюміній не стійкий у кислому і лужному середовищі, тому алюмінієвий посуд не використовується для маринадів, солінь, кисломолочних продуктів. Застосовується як розкислювача при виробництві сталі, для алітірованія деталей з метою підвищення їх жаростійкості. У чистому вигляді застосовується рідко через низьку міцності - 50 МПа.

2.1 Деформуємі алюмінієві сплави

У залежності від можливості термічного зміцнення деформуються алюмінієві сплави поділяються на не зміцнюється і зміцнюється термічною обробкою.

До сплавів, неупрочняемим т / о відносяться сплави Al c Mn (АМц1), і сплави Al c Mg (Aмг 2, АМг3). Цифра - умовний номер марки.

Ці сплави добре зварюються, мають високі пластичні властивості і корозійною стійкістю, але невисокою міцністю, зміцнюють ці сплави нагартовка. Сплави даної групи знайшли застосування в якості листового матеріалу, що використовується для виготовлення складних за формою виробів, одержуваних холодної та гарячої штампуванням і прокаткою. Вироби, одержувані глибокої витяжкою, заклепки, рами і т.д.

Сплави, зміцнюється т / о, широко застосовуються в машинобудуванні, особливо в літакобудуванні, тому що володіють малою питомою вагою при досить високих механічних властивостях. До них відносяться:

Дуралюмина - основні легуючі компоненти - мідь і магній:

Д1 - лопаті повітряних гвинтів, Д16 - обшивки, шпангоути, лонжерони літаків, Д17 - основний заклепувальний сплав.

Високоміцні сплави - В95, В96 поряд з міддю і магнієм містять ще значна кількість цинку. Застосовують для високонавантажених конструкцій.

Сплави підвищеної пластичності та корозійної стійкості - АВ, АД31, АД33. Лопаті вертольотів, штамповані і ковані деталі складної конфігурації.

2.2 Ливарні алюмінієві сплави

Найбільш широко поширені сплави системи Al-Si-силуміни.

Силумін має поєднання високих ливарних і механічних властивостей, мала питома вага. Типовий силумін сплав АЛ2 (АК12) містить 10-13% Si, Піддається загартуванню і старіння (АК7 (АЛ9), АК9 (АЛ4).

3. Цинк і його сплави

Цинк - в'язкий метал голубувато-сірого кольору. Метал з невеликою температурою плавлення (419 градусів С) і високою щільністю (7,1 г / см 3).Міцність цинку низька (150 МПа) при високій пластичності.

Цинк застосовують для гарячого та гальванічного оцинкування сталевих листів, у поліграфічній промисловості, для виготовлення гальванічних елементів. Його використовують як добавку в сплави, в першу чергу в сплави міді (латуні і т.д.), і як основу для цинкових сплавів, а також як друкарський метал.

У залежності від чистоти цинк ділиться на марки ЦВ00 (99,997% Zn), ЦВ0 (99,995% Zn), ЦВ (99,99% Zn), Ц0А (99,98% Zn), Ц0 (99,975% Zn), Ц1 (99 , 95% Zn), Ц2 (98,7% Zn), ЦЗ (97,5% Zn).

Цинкові сплави широко застосовуються в машинобудуванні і поділяються на сплави для лиття під тиском, в кокіль, для відцентрового лиття та на антифрикційні сплави. Основними легуючими компонентами цинкових сплавів є алюміній, мідь і магній. Відлиття з цинкових сплавів легко поліруються і сприймають гальванічні покриття.

Склад, властивості та застосування деяких цинкових сплавів:

  • ЦА4 містить 3.9-4.3% Al, 0,03-0,06% Mg, тимчасовий опір 250-300 МПа, пластичність 3-6%, твердість 70-90HB). Застосовується при литті під тиском деталей, до яких пред'являються вимоги стабільності розмірів та механічних властивостей.

  • ЦАМ10-5Л містить 9,0-12,4% Al, 4,0-5,5% Cu, 0,03-0,06% Mg, тимчасовий опір не менше 250 МПа, пластичність не менше 0,4%, твердість - не менш 100HB. З сплаву виготовляють підшипники і втулки металообробних верстатів, пресів, що працюють під тиском до 200-10000 Па.

  • ЦАМ9-1.5 містить 9,0-11,0% Al, 1,0-2,0% Cu, 0,03-0,06% Mg, тимчасовий опір не менше 250 МПа, пластичність не менше 1%, твердість не менш 90HB. Сплав застосовують для виготовлення різних вузлів тертя і підшипників рухомого складу.

4. Магній та його сплави

Магній - метал сріблясто-білого кольору. Температура плавлення магнію 650 ° С. Кристалічна решітка гексагональна. Відрізняється низькою щільністю (1,74 г / см 3), хорошою оброблюваністю різанням, здатністю сприймати ударні і гасити вібраційні навантаження.

У залежності від вмісту домішок встановлені наступні марки магнію: Мг96 (99,96% Mg), Мг95 (99,95% Mg), Мг90 (99,90% Mg), магній високої чистоти (99,9999% Mg).

Магній хімічно активний метал, легко окислюється на повітрі. Чистий магній з-за низьких механічних властивостей (тимчасовий опір 100-190 МПа, відносне подовження 6-17%, твердість 30-40НВ) як конструкційний матеріал практично не застосовують. Його використовують в піротехніку, в хімічній промисловості для синтезу органічних сполук, в металургії різних металів і сплавів як розкислювач, відновник і легуючий елемент.

4.1 Сплави на основі магнію

Перевагою магнієвих сплавів є висока питома міцність. Межа міцності магнієвих сплавів досягає 250-400 МПа при щільності менше 2 грамів на кубічний сантиметр. Сплави в гарячому стані добре куються, прокочуються і пресуються. Магнієві сплави добре обробляються різанням (краще, чим стали, алюмінієві та мідні сплави), добре шліфуються і поліруються. Задовільно зварюються контактної і дугового зварювання в середовищі захисних газів.

До недоліків магнієвих сплавів поряд з низькою корозійною стійкістю і малим модулем пружності слід віднести погані ливарні властивості, схильність до газонасичення, окислювання і займання при їх приготуванні.

За механічними властивостями магнієві сплави поділяють на сплави невисокою і середньої міцності, високоміцні і жароміцні, по схильність до зміцнення за допомогою термічної обробки - на зміцнюється і неупрочняемие.

Деформуємі магнієві сплави. У сплавах МА1 і МА8 основним легирующим елементом є марганець. Термічною обробкою ці сплави не упрочняются, мають гарну корозійною стійкістю і здатністю до зварювання. Сплави МА2-1 і МА5 відносяться до системи Mg-Al-Zn-Mn. Алюміній і цинк підвищують міцність сплавів, надають хорошу технологічну пластичність, що дозволяє виготовляти з них ковані і штамповані деталі складної форми (крильчатки і жалюзі капота літака). Сплави системи Mg-Zn, додатково леговані цирконієм (МА14), кадмієм, рідкісноземельними металами (МА15, МА19 та ін) відносять до високоміцних магнієвим сплавам. Їх застосовують для незварюваний сильно навантажених деталей (обшивки літаків, деталей вантажопідйомних машин, автомобілів, ткацьких верстатів та ін.)

Ливарні магнієві сплави. Найбільше застосування знайшли сплави системи Mg-Al-Zn (МЛ5, МЛ6). Вони широко застосовуються в літакобудуванні (корпуси приладів, насосів, коробок передач, ліхтарі і двері кабін і т.д.), ракетній техніці (корпуси ракет, обтічники, паливні й кисневі баки, стабілізатори), конструкціях автомобілів, особливо гоночних (корпусу, колеса , помпи та ін), в приладобудуванні (корпуси і деталі приладів). Внаслідок малої здатності до поглинання теплових нейтронів магнієві сплави використовують в атомній техніці, а завдяки високій демпфирующей здібності - при виробництві кожухів для електронної апаратури.

Більш високими технологічними і механічними властивостями володіють сплави магнію з цинком і цирконієм (МЛ 12), а також сплави, додатково леговані кадмієм (МЛ8), рідкісноземельними металами (МЛ9, МЛ10). Дані сплави застосовують для навантажених деталей літаків і авіадвигунів (корпусів компресорів, картерів, ферм шасі, колонок управління та ін.)

Магнієві сплави піддаються таким видам термічної обробки: Т1 - старіння, Т2 - відпал, Т4 - гомогенізація і гарт на повітрі, Т6 - гомогенізація, гарт на повітрі і старіння, Т61 - гомогенізація, загартування у воду і старіння.

Просмотр материалов ...

8. Неметалеві матеріали (0)

       Неметалеві матеріали являють собою велику групу простих речовин, що не володіють властивостями металів. Вони не мають металевого блиску, що не кування, погані провідники тепла й електрики. Одну з груп неметалічних матеріалів складають високомолекулярні з'єднання (полімери) - листкові речовини, з великою молекулярною масою. Полімери класифікують на природні полімери (натуральний каучук, целюлоза, природні смоли і ін.) І синтетичні (карбамідні та фенолоформальдегідні смоли). Полімери підрозділяються в залежності від хімічного складу. Форми макромолекул, фазового стану. Полімери діляться на органічні полімери (смоли, каучук і ін.), Які відрізняються міцністю і еластичністю: елементоорганіческіе полімери (до складу їх входять атоми неорганічних елементів Ti, Cu, Al і ін., Які забезпечують полімерів теплостійкість); неорганічні полімери (силікатні скла, слюда і ін.). Основу неорганічних полімерів складають оксиди кремнію, алюмінію, лужноземельних металів.

За формою макромолекул полімери ділять на лінійні, розгалужені і сітчасті. За фазового стану полімери поділяють на аморфні (полістирол, каучук і ін.). Ці полімери міцні і теплостойки. Полімери ділять на термопласти і реактопласти. Термопласти здатні оборотно розм'якшуватися при нагріванні і укріпляти при охолодженні, тобто можуть формуватися. При нагріванні реактопластов в них відбуваються хімічні перетворення, що роблять їх непридатними для повторного формування.

Пластичними масами називають матеріали, отримані на основі природних або синтетичних полімерів. З пластичних мас при нагріванні під тиском виготовляють вироби заданої форми, які стійко зберігають її після охолодження. Пластмаси широко використовують в машинобудуванні, електротехніці, радіотехніці, в будівництві. Деталі з пластмас мають високі фрикційні та антифрикційні властивості, хорошу хімічну і корозійну стійкість, хороші електроізоляційні властивості, низьку теплопровідність, малу щільність, високу питому міцність, добре склеюються, зварюються і обробляються різанням. У порівнянні з металами і сплавами пластмаси мають малі ударну в'язкість і модуль пружності.

У промисловості широко використовують такі види пластмас:

ПОЛІЕТИЛЕН - продукт полімеризації газу етилену. Має високу міцність, еластичний, зберігає отриману при обробці форму при температурах до 600 З, хороший діелектрик, морозостійкий до -600 С. Це легкий, водостійкий матеріал, з якого виготовляють в основному плівки, труби і ємності для агресивних рідин.

ПОЛИСТИРОЛ - твердий безбарвний матеріал продукт полімеризації стиролу. Виготовляється у вигляді листів, стрижнів, порошку і блоків. Полістирол - хороший діелектрик, широко використовується як електроізоляційний матеріал в високочастотної техніки. Полістирол погано розчиняється в бензині і в спиртах.

ФОТОСТІРОЛ - кристалічний полімер, який має високу хімічну стійкість до кислот, розчинів лугів, органічних розчинників. Морозостійкий до -1950 З, є хорошим антифрикційним матеріалом. З нього виготовляють труби, насоси та шланги, використовують також в якості діелектрика і захисного покриття металів.

Поліметилметакрилати - твердий безбарвний матеріал. Виготовляється у вигляді листового матеріалу товщиною від 0.8 до 24 мм. Широко використовується в авіації; світлотехніки, автомобілебудуванні і в інших галузях промисловості.

Поликапроамида - (капрон, перлон і ін.) - Термопласт, стійкий до лугів, кислот, бензину та мастил. Використовують головним чином у виробництві плівок, волокна, а також підшипників, втулок, черв'ячних і зубчастих коліс, електроізоляційних та побутових виробів.

Фенопласт - термореактивні пластмаси на основі фенолоальдегідних смол. Крім смоли (сполучного), можуть містити наповнювач (50-70%), затверджувач, барвник і ін. Наповнювачами служать порошки (наприклад, деревна, кварцова борошно. Графіт, мікро азбест), а також волокнисті матеріали (бавовняні, азбестові, скляні) . Фенопласти термостійкі (до 200 ° С), корозійностійких, нетоксичні. Використовують для виготовлення електроізоляційних деталей і побутових виробів.

Компаунд ПОЛІМЕРНІ - (лита ізоляція) - композиції на основі епоксидних і поліефірних смол, рідких кремнійорганічних каучуків містить наповнювачі, наприклад кварцовий пісок, порцелянову пил, слюдяну борошно, прискорювачі затвердіння. Призначені для ізоляції струмопровідних схем і деталей в електротехнічної, радіотехнічної і електронної апаратури. Одне з основних вимог до компаунд полімерним - низька в'язкість, що дозволяє використовувати їх для заливки (заповнення проміжків між деталями пристроїв) і просочення деталей електроапаратури, наприклад, обмоток трансформаторів. На основі фенолоформальдегідних смол виробляють Волокніту, асбоволокніти, стекловолокніти і т.д. Як наповнювачі використовують бавовняне, азбестове і скляне волокно. Стекловолокніти застосовують для виготовлення деталей з підвищеною механічною міцністю і термостійкістю. З конструкційних шаруватих матеріалів промисловості широко застосовують текстоліт, гетинакс і склотекстоліт.

Гетинаксе - шаруватий пресований матеріал на основі паперу, просоченого термореактивною синтетичною смолою (наприклад, фенолоформальдегидной). Він добре обробляється різанням, має високі механічні і електроізоляційні властивості. Застосовується в електротехніці, а також в якості декоративного матеріалу.

Текстоліт - шаруватий матеріал на основі тканини з природного волокна, просоченого синтетичною смолою (головним чином фенолоформальдегидной) використовують для виготовлення прокладок кілець, шестерень, вкладишів підшипників, деталей в радіо- і електротехніці.

Склотекстоліт - шаруватий матеріал на основі склотканини і полімерного сполучного. Характеризується високими теплостійкістю і морозостійкістю, міцністю та хорошими електроізоляційними властивостями. Використовують для виготовлення великогабаритних виробів (корпуси суден, кузова, автомобілів і т.д.), а також як електроізоляційний матеріал.

Велику групу неметалічних матеріалів складають будівельні матеріали. До будівельних матеріалів належать цегла, цемент, деревина, бетон, кераміка, ізоляційні матеріали. Будівельні матеріали характеризуються комплексом фізико-механічних властивостей.

колір- властивість тіл викликати певне зорове відчуття у відповідності зі спектральним складом і інтенсивністю відбиваного або випускається ними видимого випромінювання.

блиск - властивість поверхні матеріалу, направлено відображати світловий потік. Хороший блиск мають гладкі, дзеркальні поверхні, поганий блиск поверхні, що мають однорідні нерівності.

текстура- малюнок, що утворюється на поверхні матеріалу, після механічної обробки.

Вологість - Відношення кількості вилученої вологи до маси зразка сухого матеріалу.

усушка- зменшення лінійних розмірів і об'єму зразків при видаленні з них зв'язаної вологи.

вологопоглинання (Гігроскопічність) - здатність матеріалу поглинати вологу з навколишнього атмосфери (повітря.).

розбухання - збільшення лінійних розмірів і об'єму матеріалу при збільшенні вмісту в ньому пов'язаної вологи. Розбухання - процес, зворотній усушку.

водопоглинання - здатність матеріалу поглинати крапельно-рідку вологу при безпосередньому контакті з нею.

густина- відношення маси зразка до його обсягу.

гідрофільність- здатність матеріалу смачиваться водою. гидрофобность - Нездатність матеріалу смачиваться водою. водопроникність - здатність матеріалів пропускати через товщу воду при наявності різниці тисків.

водостійкість- здатність матеріалів не змінювати свої властивості при насиченні водою.

Характеристики міцності і деформаційні показники неметалічних матеріалів (межа міцності, твердість, ударна в'язкість і ін.) В значній мірі характеризують їх як конструкційні матеріали. Ці показники визначають у лабораторних умовах при випробуваннях на стиск, розтяг, статичний вигин, зсув, кручення і ін.

Просмотр материалов ...